精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,k),$\overrightarrow{b}$=(k-1,4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.-$\frac{1}{7}$D.2

分析 由题意可得$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$(k-1)+4k=0,解方程可得.

解答 解:∵向量$\overrightarrow{a}$=($\frac{1}{2}$,k),$\overrightarrow{b}$=(k-1,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$(k-1)+4k=0,解得k=$\frac{1}{9}$,
故选:A.

点评 本题考查平面向量的数量积和垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.请写一个圆心落在第二象限,并经过坐标原点的圆的标准方程为(x+2)2+(y-3)2=13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x,(x≥0)\\-{x^2}+2x,(x<0)\end{array}\right.$,若f(a)+f(a2-2)<0,则实数a的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lg(x2-2x-3)的定义域为集合A,函数$g(x)=\sqrt{2-|x|}$的定义域为集合B,定义集合A-B={x|x∈A且x∉B}.
(1)求A-B;
(2)若C={x|m-1<x<2m+1},C⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知点P是反比例函数y=$\frac{2\sqrt{3}}{x}$(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的$\frac{1}{2}$?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线x+my+6=0和(m-2)x+3y+2m=0互相平行,则实数m的取值为(  )
A.-1或3B.-1C.-3D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|2x>1},B={ x|x<1},则A∩B?(  )
A.{ x|0<x<1}B.{ x|x>?0}C.{ x|x>1}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$,$\overrightarrow{e_3}$为单位向量,且$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$,(k>0),若以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$为两边的三角形的面积为$\frac{1}{2}$,则k的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=3,AB=2,BC=$\sqrt{3}$,求P到BD的距离.

查看答案和解析>>

同步练习册答案