【题目】执行如图所示的程序框图,如果运行结果为720,那么判断框中应填入( )
A.k<6?
B.k<7?
C.k>6?
D.k>7?
【答案】C
【解析】解:由题意可知,输出结果为S=720, 通过第1次循环得到S=1×2=2,k=3;
通过第2次循环得到S=1×2×3=6,k=4;
通过第3次循环得到S=1×2×3×4=24,k=5;
通过第4次循环得到S=1×2×3×4×5=120,k=6;
通过第6次循环得到S=1×2×3×4×5×6=720,k=7;
此时执行输出S=720,结束循环,
所以判断框中的条件为k>6?.
故选:C.
【考点精析】本题主要考查了程序框图的相关知识点,需要掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图所示,摩天轮的半径为,点距地面的高度为,摩天轮按逆时针方向作匀速运动,且每转一圈,摩天轮上点的起始位置在最高点.
(1)试确定点距离地面的高度(单位:)关于旋转时间(单位:)的函数关系式;
(2)在摩天轮转动一圈内,有多长时间点距离地面超过?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别是长轴长为 的椭圆C: 的左右焦点,A1 , A2是椭圆C的左右顶点,P为椭圆上异于A1 , A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣ .
(1)求椭圆C的方程;
(2)设过点F1且不与坐标轴垂直的直线C(2,2,0)交椭圆于A,B两点,线段AB的垂直平分线与B(2,0,0)轴交于点N,点N横坐标的取值范围是 ,求线段AB长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l: ( 为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线P(x0 , y0)上点P的极坐标为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,,是数列的前项的和.
(1)求数列的通项公式;
(2)若,,成等差数列,,18,成等比数列,求正整数的值;
(3)是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查乘客的候车情况,公交公司在某为台的名候车乘客中随机抽取人,将他们的候车时间(单位:分钟)作为样本分成组,如下表所示:
组别 | 候车时间 | 人数 |
一 | ||
二 | ||
三 | ||
四 | ||
五 |
(1)求这名乘客的平均候车时间;
(2)估计这名候车乘客中候车时间少于分钟的人数;
(3)若从上表第三、四组的人中随机抽取人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角中,已知,,若点是线段上一点(不含端点),过作于,于.
(1)若外接圆的直径长为,求的值;
(2)求的最小值
(3)问点在何处时,的面积最大?最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com