精英家教网 > 高中数学 > 题目详情

已知等差数列{an}中,a2+a4=10,a5=9,数列{bn}中,b1=a1,bn+1=bn+an
( I)求数列{an}的通项公式,写出它的前n项和Sn
( II)求数列{bn}的通项公式;
( III)若数学公式,求数列{cn}的前n项和Tn

解:( I)设an=a1+(n-1)d,由题意得2a1+4d=10,a1+4d=9,a1=1,d=2,
所以an=2n-1,.…(4分)
( II)b1=a1=1,bn+1=bn+an=bn+2n-1,
所以b2=b1+1,b3=b2+3=b1+1+3,…
(n≥2),
又n=1时n2-2n+2=1=a1
所以数列{bn}的通项;…(9分)
( III)

=. …(14分)
分析:( I)由等差数列的通项公式,结合条件求出首项和公差,可得数列{an}的通项公式及它的前n项和Sn
( II)由b1=a1,bn+1=bn+an,求出数列{bn}的通项公式.
( III)化简=,由此利用裂项法对数列{cn}求其前n项和.
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,等差数列前n项和公式的应用,用裂项法进行数列求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案