精英家教网 > 高中数学 > 题目详情
6.已知A(1,2),B(3,7),$\overrightarrow{a}$=(x,-1),$\overrightarrow{AB}$∥$\overrightarrow{a}$,则(  )
A.x=$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相同B.x=-$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相同
C.x=$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相反D.x=-$\frac{2}{5}$,且$\overrightarrow{AB}$与$\overrightarrow{a}$方向相反

分析 求出AB向量,利用斜率平行求出x,然后判断两个向量的方向即可.

解答 解:A(1,2),B(3,7),
可得$\overrightarrow{AB}$=(2,5)
$\overrightarrow{a}$=(x,-1),$\overrightarrow{AB}$∥$\overrightarrow{a}$,
可得5x=-2,解得x=-$\frac{2}{5}$.
$\overrightarrow{a}$=(-$\frac{2}{5}$,-1),与$\overrightarrow{AB}$方向相反.
故选:D.

点评 本题考查斜率共线,向量的坐标运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是等比数列,a3=4,且a3是a2+4与a4+14的等差中项;数列{bn}是等差数列,b2=16,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式及λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作直线y=-$\frac{b}{a}$x的垂线,垂足为A,交双曲线左支于B点,若$\overrightarrow{FB}$=2$\overrightarrow{FA}$,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的长轴长为2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴为2,离心率为$\frac{\sqrt{6}}{3}$,直线x=my-1(m∈R)交椭圆E于A,B两点,O为坐标原点.
(1)求椭圆E的方程;
(2)求△OAB面积的最大值;
(3)当m∈R时,判断点G(-2,0)与AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),且m$\overrightarrow{a}$+n$\overrightarrow{b}$=(5,-5)(m,n∈R),则m-n的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知圆M经过点A(1,0),B(3,0),C(0,1).
(1)求圆M的方程;
(2)若直线l“mx-2y-(2m+1)=0与圆M交于点P,Q,且$\overrightarrow{MP}$•$\overrightarrow{MQ}$=0,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),向量$\overrightarrow{b}$=($\sqrt{3}$cosx,-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+$\frac{1}{2}$.
(1)求函数f(x)的单调递减区间;
(2)将函数y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=18.

查看答案和解析>>

同步练习册答案