精英家教网 > 高中数学 > 题目详情

已知函数f(x)=log3x.
(Ⅰ)若关于x的方程f(ax)•f(ax2)=f(3)的解都在区间(0,1)内,求实数a的范围;
(Ⅱ)若函数f(x2-2ax+3)在区间[2,+∞)上单调递增,求正实数a的取值范围.

解:(Ⅰ)∵f(ax)f(ax2)=f(3),∴log3ax=log33
∴(log3a+log3x)(log3a+2log3x)=1,∴2(log3x)2+3log3a•log3x+log32a-1=0.
令t=log3x,∵0<x<1,∴t<0.∴方程2t2+3log3a•t+log32a-1=0的两根为负.
∴△=(3log3a2-8(log32a-1)≥0,
,∴.…(7分)
(Ⅱ)∵函数f(x2-2ax+3)=log3(x2-2ax+3)在[2,+∞)上单调递增,
∴g(x)=x2-2ax+3在[2,+∞)上大于零且单调递增,
,∴.…(12分)
分析:(Ⅰ)由条件可得2(log3x)2+3log3a•log3x+log32a-1=0,令t=log3x,可得方程2t2+3log3a•t+log32a-1=0的
两根为负,由判别式大于或等于0及两根之和小于0、两根之积大于0,求出实数a的范围.
(Ⅱ)由题意可得g(x)=x2-2ax+3在[2,+∞)上大于零且单调递增,,由此求得正实数a的取值范围.
点评:本题主要考查一元二次方程的根的分布与系数的关系,复合函数的单调性的判断和证明,换元过程中注意变量范围
的改变.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案