精英家教网 > 高中数学 > 题目详情
15.已知函数y=-x2+x-6,若使图象都在x轴的下方,求x的取值范围.

分析 根据已知中函数的解析式,分析函数图象的形状,进而可得答案.

解答 解:∵△=1-24<0,
∴函数y=-x2+x-6的图象开口方向朝下,且与x轴没有交点,
此时函数图象恒在x轴下方,
故满足条件的x的取值范围为R.

点评 本题考查的知识点是二次函数,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,G为重心,在AD的延长线上取一点G′,使得GD=G′D=4,若CG=6,BG=10,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(2x-$\frac{π}{6}$),则下面说法正确的是(  )
A.函数图象关于点($\frac{π}{12}$,0)对称B.函数图象的-条对称轴方程为x=$\frac{π}{6}$
C.函数f(x)是奇函数D.函数f(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在等比数列{an}中,a1+a2+a3=-3,a1a2a3=8.
(1)求通项公式;
(2)求a1•a3•a5•a7•a9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=3+$\sqrt{2-3x}$,x∈[-5,-2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.f(x)=$\frac{x+2}{2ax-1}$的值域是{y|y∈R,y≠2},则f(x)的定义域为{x|x∈R,x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若数列{an}的通项公式为an=$\frac{1}{3}$(10n-1),则{an}的前n项和为(  )
A.$\frac{1{0}^{n+1}-10}{27}$-$\frac{n}{3}$B.$\frac{1{0}^{n}-1}{9}$-$\frac{n}{3}$C.$\frac{1{0}^{n}-n-1}{9}$D.$\frac{1{0}^{n}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知:tanx=-$\frac{1}{3}$,求$\frac{2+5cos2x}{3+4sin2x}$的值;
(2)已知:sinx=-$\frac{3}{5}$,x∈($\frac{3π}{2}$,2π),求sin2x和tan(π-2x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+$\frac{1}{x}$(a为实数).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若0<a<$\frac{1}{a}$时,判断f(x)在x∈(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最小值6.

查看答案和解析>>

同步练习册答案