精英家教网 > 高中数学 > 题目详情

【题目】中,角的对边分别为,且满足.

(1)求角的大小;

(2)若,求面积的最大值.

【答案】1;2

【解析】

试题(1)由平面向量的数量积定义与正弦定理进行化简的值,进而求教B;2)利用余弦定理与基本不等式进行求解.

试题解析:(1)由题意得(accosBbcosC

根据正弦定理有(sinAsinCcosBsinBcosC

所以sinAcosBsinCB),即sinAcosBsinA

因为sinA>0,所以cosB

B∈0π),所以B

2)因为||=,所以

b

根据余弦定理及基本不等式得

6a2c2ac≥2acac=(2ac(当且仅当ac时取等号),即ac≤32).

△ABC的面积SacsinB≤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为(
A.66
B.33
C.16
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切.

(1)求该抛物线的方程;

(2)过抛物线焦点的直线交抛物线于 两点,分别在点 处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岸A处,发现北偏东方向,距离A n mileB处有一艘走私船,在A处北偏西方向,距离A2 n mileC处有一艘缉私艇奉命以n mile / h的速度追截走私船,此时,走私船正以10 n mile / h的速度从B处向北偏东方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间。(本题解题过程中请不要使用计算器,以保证数据的相对准确和计算的方便)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:

(1)画出散点图;

(2)根据如下的参考公式与参考数据,求利润额y与销售额x之间的线性回归方程;

(3)若该公司还有一个零售店某月销售额为10千万元,试估计它的利润额是多少?

(参考公式:,其中:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:(x+1)(x-5)≤0,命题q:1-mx<1+m(m>0).

(1)pq的充分条件,求实数m的取值范围;

(2)m=5,如果pq有且仅有一个真命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2) 已知点的极坐标为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

1)记函数上的偶函数为事件,求事件的概率;

2)求的分布列和数学期望.

查看答案和解析>>

同步练习册答案