精英家教网 > 高中数学 > 题目详情

如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且数学公式,点C为圆O上一点,且数学公式.点P在圆O所在平面上的正投影为点D,PD=BD.
(Ⅰ)求证:CD⊥平面PAB;
(Ⅱ)求PD与平面PBC所成的角的正弦值.

(Ⅰ)证明:连接CO,由3AD=DB知,点D为AO的中点,
又∵AB为圆O的直径,∴AC⊥CB,
知,∠CAB=60°,
∴△ACO为等边三角形,从而CD⊥AO.
∵点P在圆O所在平面上的正投影为点D,
∴PD⊥平面ABC,又CD?平面ABC,
∴PD⊥CD,
由PD∩AO=D得,CD⊥平面PAB.
(Ⅱ)解:由(Ⅰ)可知CD=,PD=DB=3,
过点D作DE⊥CB,垂足为E,连接PE,再过点D作DF⊥PE,垂足为F.
∵PD⊥平面ABC,又CB?平面ABC,
∴PD⊥CB,又PD∩DE=D,
∴CB⊥平面PDE,又DF?平面PDE,
∴CB⊥DF,又CB∩PE=E,
∴DF⊥平面PBC,故∠DPF为所求的线面角.
在Rt△DEB中,DE=DBsin30°=

分析:(I)由已知可得△ACO为等边三角形,从而CD⊥AO.由点P在圆O所在平面上的正投影为点D,可得PD⊥平面ABC,得到PD⊥CD,再利用线面垂直的判定定理即可证明;
(II)过点D作DE⊥CB,垂足为E,连接PE,再过点D作DF⊥PE,垂足为F.得到DF⊥平面PBC,故∠DPF为所求的线面角.在Rt△DEB中,利用边角关系求出DE即可.
点评:熟练掌握等边三角形的判定与性质、正投影的意义、线面垂直的判定与性质定理、线面角的定义与作法、直角三角形的边角关系等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图:已知圆O的直径是2,点C在直径AB的延长线上,BC=1,点P是圆O上的一个动点,以PC为边作正三角形PCD,且点D与圆心分别在PC的两侧,求四边形OPDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点.
(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;
(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=
1
3
DB
,点C为圆O上一点,且BC=
3
AC
.点P在圆O所在平面上的正投影为点D,PD=BD.
(Ⅰ)求证:CD⊥平面PAB;
(Ⅱ)求PD与平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=
1
3
DB
,点C为圆O上一点,且BC=
3
AC
.点P在圆O所在平面上的正投影为点D,PD=BD.
(1)求证:CD⊥平面PAB;
(2)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北衡水中学高三第一次模拟考试文科数学试卷(解析版) 题型:解答题

(本题12分)

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。

(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;

(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

 

查看答案和解析>>

同步练习册答案