精英家教网 > 高中数学 > 题目详情
13.若直线3x+y-3=0与直线6x+my+1=0平行,则它们之间的距离为(  )
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{7\sqrt{10}}}{10}$D.$\frac{{7\sqrt{10}}}{20}$

分析 通过直线平行求出m,然后利用平行线之间的距离求出结果即可.

解答 解:直线3x+y-3=0与直线6x+my+1=0平行,所以m=2,
则直线6x+2y-6=0与直线6x+2y+1=0之间的距离为:$\frac{|-6-1|}{\sqrt{36+4}}$=$\frac{7\sqrt{10}}{20}$.
故选:D.

点评 本题考查平行线之间的距离的求法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$),k∈ZB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈Z
C.(k-$\frac{1}{4}$,k-$\frac{3}{4}$),k∈ZD.(2k-$\frac{1}{4}$,2k+$\frac{3}{4}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AB=2$\sqrt{2}$,D、E分别是的AB,BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\frac{bx+c}{{a{x^2}+1}}(a,b,c∈R)$是奇函数,且f(-2)≤f(x)≤f(2),则a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,则$z=\frac{y}{x+1}$的最大值为(  )
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线$l:mx+y+3m-\sqrt{3}=0$与圆x2+y2=12交于A,B两点,若$|{AB}|=2\sqrt{3}$,则直线l在x轴上的截距为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在三棱锥P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,则该三棱锥外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(1)已知函数f(x)=|x-1|+|x-3|,g(a)=4a-a2,使不等式f(x)>g(a)对?a∈R恒成立,求实数x的取值范围;
(2)已知a,b,c∈R+,a+b+c=1,求$\sqrt{a}$+$\sqrt{2b}$+$\sqrt{3c}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,且S6=5S2+18,a3n=3an,数列{bn}满足b1•b2•…•bn=4Sn
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=log2bn,且数列$\left\{{\frac{1}{{{c_n}•{c_{n+1}}}}}\right\}$的前n项和为Tn,求T2016

查看答案和解析>>

同步练习册答案