精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b,c是角A,B,C所对的边,若sinA+sin(C-B)=sin2B,且
c
a
<cosB,则△ABC的形状为(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形
考点:三角形的形状判断
专题:计算题,解三角形
分析:由sinA+sin(C-B)=sin2B,可得2sinCcosB=2sinBcosB,
c
a
<cosB,可得cosB≠0,从而sinC=sinB,即可得出结论.
解答: 解:∵sinA+sin(C-B)=sin2B,
∴sin(C+B)+sin(C-B)=sin2B,
∴2sinCcosB=2sinBcosB,
c
a
<cosB,∴cosB≠0
∴sinC=sinB,
∴C=B,
∴△ABC是等腰三角形.
故选:A.
点评:本题考查三角形的形状判断,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象过点(2,0),那么函数y=f(x+3)-1的图象一定过下面点中的(  )
A、(-1,1)
B、(1,-1)
C、(-1,-1)
D、(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=-2sin2x+2cosx+2;
(2)y=3cosx-
3
sinx,x∈[0,
π
2
];
(3)y=sinx+cosx+sinxcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l被两平行直线3x+y-6=0和3x+y+3=0所截得的线段长为3,且直线过点(1,0),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x
的定义域是
 
,值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AB=
2

(1)求二面角A-PC-B的余弦值;
(2)设E为棱PC上的点,满足直线DE与平面PBC所成角的正弦值为
2
2
3
,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:5x+3y=0和l2:5x-3y=0,写出两个以直线l1和l2为渐近线的双曲线标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
4
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an≤1
,则a2014=(  )
A、
4
5
B、
2
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.
其中正确说法的序号是
 

查看答案和解析>>

同步练习册答案