精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F(1,0).
(1)若椭圆的离心率e=
1
3
,求椭圆的方程;
(2)设过点F的直线l交椭圆于C、D两点,若直线l绕点F任意转动时恒有
OC
OD
<0,其中O坐标原点,求实数a的取值范围.
考点:直线与圆锥曲线的关系,椭圆的简单性质
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知得
c=1
e=
c
a
=
1
3
a2=b2+c2
,由此能求出椭圆方程.
(2)椭圆
x2
a2
+
y2
b2
=1转化为
x2
a2
+
y2
a2-1
=1
,a>1,当直线l的斜率不存在时,
OC
OD
=(1,
a2-1
a
)•(1,-
a2-1
a
)=1-
(a2-1)2
a2
<0,解得a>1.当直线l的斜率存在时,设l的方程为y=k(x-1),联立
y=k(x-1)
x2
a2
+
y2
a2-1
=1
,得(a2+a2k2-1)x2-2a2k2x+a2k2-a4+a2=0,由此利用韦达定理得推导出a>1.由此能求出a的取值范围是(1,+∞).
解答: 解:(1)∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F(1,0).
椭圆的离心率e=
1
3

c=1
e=
c
a
=
1
3
a2=b2+c2
,解得a=3,b2=9-1=8,
∴椭圆方程为
x2
9
+
y2
8
=1

(2)椭圆
x2
a2
+
y2
b2
=1转化为
x2
a2
+
y2
a2-1
=1
,a>1,
当直线l的斜率不存在时,l的方程为x=1,得C(1,
a2-1
a
),D(1,-
a2-1
a
),
OC
OD
=(1,
a2-1
a
)•(1,-
a2-1
a
)=1-
(a2-1)2
a2
<0,
整理,得a2-a-1>0.由a>1,解得a>1.
当直线l的斜率存在时,设l的方程为y=k(x-1),
联立
y=k(x-1)
x2
a2
+
y2
a2-1
=1
,得(a2+a2k2-1)x2-2a2k2x+a2k2-a4+a2=0,
∵∵过点F的直线l交椭圆于C、D两点,∴a2+k2-1≠0且△>0,
∴△=(-2a2k22-4(a2+a2k2-1)(a2k2-a4+a2)>0,

设C(x1,y1),D(x2,y2),
x1+x2=
2a2k2
a2+a2k2-1
x1x2 =
a2k2-a4+a2
a2+a2k2-1

y1y2=k(x1-1)•k(x2-1)=k2x1x2-k2(x1+x2)+k2
OC
OD
<0,
∴x1x2+y1y2=(1+k2)x1x2-k2(x1+x2)+k2<0,
(k2+1)(a2+a2k2-a4)-2k4a2+k2(a2+a2k2-1)
a2+a2k2-1

=
a2-a4-k2(a4-3a2+1)
a2(k2+1)-1
<0,
∵a2-1>0,∴a2(k2+1)-1>0,
∴a2-a4-k2(a4-3a2+1)<0,
∴(1+3k2)a2-(1+k2)a4-k2<0,
a4-a2+1-
2k2a2+1
1+k2
>0

∴a4-a2>0,
∴a2>1,解得a>1或a<-1(舍).
综上所述,a的取值范围是(1,+∞).
点评:本题考查椭圆方程的求法,考查椭圆中参数的取值范围的求法,解题要认真审题,注意椭圆性质和韦达定理、向量知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x=1是函数f(x)的图象的一条对称轴,对任意x∈R,f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD的两对角线交于点M(2,0),AB边所在直线方程为x-3y-6=0,AD边所在直线为3x+y+2=0,
则矩形ABCD外接圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x-1),那么f(x)的定义域是(  )
A、R
B、{x|x>1}
C、{x|x≠1}
D、{x|x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:

设对任意的正整数m,n,数列{an},{bn}满足3am+n=am•an,且a1=1,bm+n=bn+2m,且b5=13.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
1
bnbn+1
,求数列{cn}的前n项和Sn
(3)设dn=nan,Tn是数列{dn}的前n项和,证明:1≤Tn
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如右图所示,则①②处应填(  )
A、y=0.8x    y=0.5x
B、y=0.5x    y=0.8x
C、y=25×0.5+(x-25)×0.8    y=0.5x
D、y=25×0.5+0.8x    y=0.8x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A′B′C′的主视图和侧左视图如图所示.设△ABC的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则S的最大值为(  )
A、8B、4C、12D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F是PC的中点,
(1)证明:平面PBD⊥平面PAC;
(2)求证:BF∥平面ACE;
(3)求三棱锥D-BCF的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P为抛物线y2=2x上的任意一点,求点P到直线x-2y+4=0的最短距离.

查看答案和解析>>

同步练习册答案