精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,侧面是边长为的正三角形,,平面平面,把平面沿旋转至平面的位置,记点旋转后对应的点为(不在平面内),分别是的中点.

1)求证:

2)求三棱锥的体积的最大值.

【答案】1)证明见解析;(2.

【解析】

1)连接,利用面面垂直的性质定理得出平面,可得出,利用勾股定理计算出,推导出是以为直角的直角三角形,再由中位线的性质得出,由此可得出

2)由的面积为定值,可知当平面平面时,三棱锥的体积最大,连接,推导出平面,计算出以及的面积,然后利用锥体的体积公式可求得结果.

1)如图,连接

因为的中点,所以

又平面平面,平面平面平面

所以平面平面,所以

因为为边长为的正三角形,所以

,所以由勾股定理可得

,则

所以为直角三角形,且

分别是的中点,所以,所以

2)如图,连接

因为三棱锥与三棱锥为同一个三棱锥,且的面积为定值,

所以当三棱锥的体积最大时,则平面平面

,则的中点,则

平面平面,平面平面平面

平面

此时点到平面的距离为

中,因为,所以

所以的最大值为

所以三棱锥的体积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出曲线的直角坐标方程,并求时直线的普通方程;

2)直线和曲线交于两点,点的直角坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代教育要求学生掌握六艺,即礼、乐、射、御、书、数.某校为弘扬中国传统文化,举行有关六艺的知识竞赛.甲、乙、丙三位同学进行了决赛.决赛规则:决赛共分场,每场比赛的第一名、第二名、第三名的得分分别为,选手最后得分为各场得分之和,决赛结果是甲最后得分为分,乙和丙最后得分都为分,且乙在其中一场比赛中获得第一名,现有下列说法:

①每场比赛第一名得分分;

②甲可能有一场比赛获得第二名;

③乙有四场比赛获得第三名;

④丙可能有一场比赛获得第一名.

则以上说法中正确的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xiyi)(i=1220),其中xiyi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得.

1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);

2)求样本(xiyi)(i=1220)的相关系数(精确到0.01);

3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.

附:相关系数r=≈1.414.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知,动点满足.

1)求动点的轨迹的方程;

2)若点M为(1)中轨迹上一动点,,直线MA的另一个交点为N;记,若t值与点M位置无关,则称此时的点A稳定点”.是否存在稳定点?若存在,求出该点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,四边形为矩形,.

(1)求证:平面

(2)设,求平面与平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为的左、右顶点.

1)求的方程;

2)若点上,点在直线上,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一个负数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

同步练习册答案