精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)当时,求在区间上的取值范围.

)当时,,求的值.

【答案】1)当m=0时,

,由已知,得

从而得:的值域为

2

化简得:

,得:

代入上式,m=-2.

【解析】

试题(1)把m=0代入到fx)中,然后分别利用同角三角函数间的基本关系、二倍角的正弦、余弦函数公式以及特殊角的三角函数值把fx)化为一个角的正弦函数,利用x的范围求出此正弦函数角的范围,根据角的范围,利用正弦函数的图象即可得到fx)的值域;

2)把fx)的解析式利用二倍角的正弦、余弦函数公式及积化和差公式化简得到关于sin2xcos2x的式子,把x换成α,根据tanα的值,利用同角三角函数间的基本关系以及二倍角的正弦函数公式化简求出sin2αcos2α的值,把sin2αcos2α的值代入到fα=中得到关于m的方程,求出m的值即可.

试题解析:(1)当m=0时,f(x)(1+)sin2xsin2x+sinxcosx,由已知,得,从而得的值域为[0].

f(x)(1)sin2xmsin(x)sin(x)

,所以,当,得,代入式得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.

(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;

(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:为圆柱的底面枳,为圆柱的高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.“sinα= ”是“cos2α= ”的必要不充分条件
B.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有 ,则p∧(¬q)是真命题
C.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sinxcosx+cos2x,锐角△ABC的三个角A,B,C所对的边分别为a,b,c. (Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(C)=1,求m= 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是圆周上不同于AB的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且满足(2a-bcosC-ccosB=0

(Ⅰ)求角C的值;

(Ⅱ)若三边abc满足a+b=13c=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小正周期;

(2)若存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆一个焦点为,离心率

Ⅰ)求椭圆的方程式.

Ⅱ)定点为椭圆上的动点,求的最大值;并求出取最大值时点的坐标求.

Ⅲ)定直线为椭圆上的动点,证明点的距离与到定直线的距离的比值为常数,并求出此常数值.

查看答案和解析>>

同步练习册答案