【题目】已知函数,.
(1)当时,求函数的单调区间;
(2)设函数,.若函数的最小值是,求的值;
(3)若函数,的定义域都是,对于函数的图象上的任意一点,在函数的图象上都存在一点,使得,其中是自然对数的底数,为坐标原点,求的取值范围.
【答案】(1)见解析(2)1(3)
【解析】试题分析:
(1) 当时,,可得函数的单调增区间是,单调减区间为 ;
(2) ,令得,
函数在上单调减;函数在上单调增.
所以.分类讨论:
①当时,;
②当时,解得(舍).
综上所述,的值为1.
(3)由题意可知函数在上单调增,故.
所以,即在上恒成立,
构造函数:设,设,结合函数的性质可得,的取值范围为.
试题解析:
解:(1) 当时,,.
因为在上单调增,且,
所以当时,;当时,.
所以函数的单调增区间是.
(2),则,令得,
当时,,函数在上单调减;
当时,,函数在上单调增.
所以.
①当,即时,
函数的最小值,
即,解得或(舍),所以;
②当,即时,
函数的最小值,解得(舍).
综上所述,的值为1.
(3)由题意知,,.
考虑函数,因为在上恒成立,
所以函数在上单调增,故.
所以,即在上恒成立,
即在上恒成立.
设,则在上恒成立,
所以在上单调减,所以.
设,
则在上恒成立,
所以在上单调增,所以.
综上所述,的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图,经过点作两条互相垂直的直线和,直线交轴正半轴于点,直线交轴正半轴于点.
(1)如果,求点的坐标.
(2)试问是否总存在经过, , , 四点的圆?如果存在,求出半径最小的圆的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an= (n∈N* , n≥2),数列{bn}满足关系式bn= (n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两个粮库要向A,B两镇运送大米,已知甲库可调出100 t大米,乙库可调出80 t大米,A镇需70 t大米,B镇需110 t大米.两库到两镇的路程和运费如下表:
这两个粮库各运往A,B两镇多少t大米,才能使总运费最省?此时总运费是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1经过点A(﹣3,0),B(3,2),直线l2经过点B,且l1⊥l2 .
(1)求经过点B且在两坐标轴上的截距相等的直线的方程;
(2)设直线l2与直线y=8x的交点为C,求△ABC外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3 an(n∈N*),数列{cn}满足cn=anbn .
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn;
(3)若cn≤ +m﹣1对一切正整数n恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了丰富退休生活,老王坚持每天健步走,并用计步器记录每天健步走的步数.他从某月中随机抽取20天的健步走步数(老王每天健步走的步数都在之间,单位:千步),绘制出频率分布直方图(不完整)如图所示.
(1)完成频率分布直方图,并估计该月老王每天健步走的平均步数(每组数据可用区间中点值代替;
(2)某健康组织对健步走步数的评价标准如下表:
每天步数分组(千步) | |||
评价级别 | 及格 | 良好 | 优秀 |
现从这20天中评价级别是“及格”或“良好”的天数里随机抽取2天,求这2天的健步走结果属于同一评价级别的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:
x | 15.0 | 25.58 | 30.0 | 36.6 | 44.4 |
y | 39.4 | 42.9 | 42.9 | 43.1 | 49.2 |
(1)以x为解释变量,y为预报变量,作出散点图;
(2)求y与x之间的线性回归方程,对于基本苗数56.7预报其有效穗;
(3)计算各组残差,并计算残差平方和;
(4)求R2,并说明残差变量对有效穗的影响占百分之几.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com