精英家教网 > 高中数学 > 题目详情
18.定义在(-1,1)上的函数f(x)满足:当x,y∈(-1,1)时,f(x)-f(y)=f($\frac{x-y}{1-xy}$),并且当x∈(-1,0)时,f(x)>0;若P=f($\frac{1}{3}$)+f($\frac{1}{4}$),Q=f($\frac{1}{2}$),R=f(0),则P、Q、R的大小关系为R>Q>P.

分析 在已知等式中取x=y=0,可求得f(0)=0,取-1<x<y<1,能说明$\frac{x-y}{1-xy}$∈(-1,0),所以说明f( $\frac{x-y}{1-xy}$)>0,从而说明函数f(x)在(-1,1)上为减函数,再由已知等式把f($\frac{1}{3}$)+f($\frac{1}{4}$)化为一个数的函数值,则三个数的大小即可比较.

解答 解:取x=y=0,则f(0)-f(0)=f(0),所以,f(0)=0,
设x<y,且满足-1<x<y<1,则-1<$\frac{x-y}{1-xy}$<0,所以f( $\frac{x-y}{1-xy}$)>0,
又f(x)-f(y)=f($\frac{x-y}{1-xy}$),
所以f(x)>f(y),所以函数f(x)在(-1,1)上为减函数,
由f(x)-f(y)=f( $\frac{x-y}{1-xy}$),得:f(x)=f(y)+f($\frac{x-y}{1-xy}$),
取y=$\frac{1}{3}$,$\frac{x-y}{1-xy}$=$\frac{1}{4}$,则x=$\frac{7}{13}$,
所以P=f($\frac{1}{3}$)+f($\frac{1}{4}$)=f($\frac{7}{13}$),
因为0<$\frac{1}{2}$<$\frac{7}{13}$,所以f(0)>f($\frac{1}{2}$)>f($\frac{7}{13}$)
所以R>Q>P.
故答案为:R>Q>P.

点评 本题考查了不等关系与不等式,考查了特值思想,解答此题的关键是能够运用已知的等式证出函数是给定区间上的减函数,同时需要借助于已知等式把P化为一个数的函数值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点(0,$\sqrt{3}}$),离心率为$\frac{1}{2}$,左,右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆C的方程;
(2)若直线l:y=-$\frac{1}{2}$x+m与椭圆交于A,B两点,与圆x2+y2=c2交于C,D两点,且满足:|AB|=$\frac{{5\sqrt{3}}}{4}$|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.计算lg0.014=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{{x}^{2}+4}{x}$(x>0)的最小值为(  )
A.2B.3C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,k),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知2x+2y=6,则2x+y的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列有关命正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“?x∈(1,+∞),使得x2+x-1<0”的否定是:“?x∈(1,+∞),均有x2+x-1≥0”
C.“x=-1是x2-5x-6=0”必要不充分条件
D.命题“已知x,y∈R,若x≠1,或y≠4则x+y≠5”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=2,an+1an=an-1,则a2016值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点B(0,-1).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=k(x+2)交椭圆于P、Q两点,若$\overrightarrow{BP}$•$\overrightarrow{BQ}$<0,求实数k的取值范围.

查看答案和解析>>

同步练习册答案