精英家教网 > 高中数学 > 题目详情
有下面四个判断:
①命题“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;
②若“p或q”为真命题,则p、q均为真命题;
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是“?a、b∈R,a2+b2≤2(a-b-1)”;
④若函数f(x)=ln(a+
2x+1
)
的图象关于原点对称,则a=-1.
其中正确的有
(只填序号)
分析:①利用逆否命题与原命题的等价性进行判断.②利用复合命题与简单命题真假关系判断.③利用含有量词的命题的否定进行判断.④利用函数奇偶性的定义进行判断.
解答:解:①当a=3且b=3时,a+b=6,所以命题正确,根据逆否命题和原命题的等价性可知,若a+b≠6,则a≠3或b≠3”为真命题,∴①错误.
②若“p或q”为真命题,则p、q至少有一个为真命题,∴②错误.
③根据全称命题的否定是特称命题,∴命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是“?a、b∈R,a2+b2<2(a-b-1)”,∴③错误.
④若函数f(x)=ln(a+
2
x+1
)
的图象关于原点对称,则f(0)=ln(a+2)=0,解得a+2=1,即a=-1.∴④正确.
故答案为:④.
点评:本题主要考查各种命题的真假判断,涉及的知识点较多,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)有下面四个判断:
①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题
②若“p或q”为真命题,则p、q均为真命题
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函数f(x)=ln(a+
2
x+1
)
的图象关于原点对称,则a=3
其中正确的个数共有(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市十一县高三上学期期中联考文科数学试卷(解析版) 题型:选择题

有下面四个判断:

①命题:“设,若,则”是一个假命题

②若“pq”为真命题,则pq均为真命题

③命题“”的否定是:

④若函数的图象关于原点对称,则

其中正确的个数共有(   )

A. 0个             B. 1个             C.2个              D. 3个

 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下面四个判断:

①命题“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;

②若“p或q”为真命题,则p、q均为真命题;

③命题“∀a、b∈R,a2+b2≥2(a﹣b﹣1)”的否定是“∃a、b∈R,a2+b2≤2(a﹣b﹣1)”;

④若函数的图象关于原点对称,则a=﹣1.其中正确的有  (只填序号)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省八校高三联考数学试卷(文科)(解析版) 题型:选择题

有下面四个判断:
①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题
②若“p或q”为真命题,则p、q均为真命题
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函数的图象关于原点对称,则a=3
其中正确的个数共有( )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

同步练习册答案