精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为C1上任意一点P的直角坐标为,通过变换得到点P的对应点的坐标.

1)求点的轨迹C2的直角坐标方程;

2)直线的参数方程为为参数),C2于点MN,点,求的值.

【答案】1;(2.

【解析】

1 先把曲线C1的极坐标方程化为直角坐标方程,再代入,即得曲线C2的直角坐标方程;

2)将直线的参数方程代入的直角坐标方程,再利用直线参数方程的几何意义求解.

1)因为曲线的极坐标方程为,所以的直角坐标方程为.

,得,代入,即.

所以曲线的直角坐标方程为.

2)将直线的参数方程代入,得

设点所对的参数分别为,则.

又因为直线过点,由直线参数方程的几何意义可得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xa|-x(a>0).

(1)若a=3,解关于x的不等式f(x)<0;

(2)若对于任意的实数x,不等式f(x)-f(xa)<a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l1的参数方程为t为参数),直线l2的参数方程为t为参数),其中α∈(0),以原点O为点x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ2sinθ0

1)写出直线l1的极坐标方程和曲线C的直角坐标方程;

2)设直线l1l2分别与曲线C交于点AB(非坐标原点)求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直四棱柱的底面ABCD是菱形,E上任意一点.

1)求证:平面平面

2)设,当E的中点时,求点E到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】贵阳市交管部门于20184月对贵阳市长期执行的“两限”政策进行了调整,调整后贵阳市贵A普客小汽车拥有和外地牌照汽车一样的驶入一环开四停四的权利,为统计开放政策实施后贵阳市一环内城区的交通流量状况,市交管部门抽取了某月30天内的日均汽车流量与实际容纳量进行对比,比值记为,若该比值不超过1称为“畅通”,否则称为“拥堵”,如图所示的程序框图实现的功能是(

A.30天内交通的畅通率B.30天内交通的拥堵率

C.30天内交通的畅通天数D.30天内交通的拥堵天数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为α为参数).以坐标原点O为极点,x轴正半轴为极轴的坐标系中,曲线C2的方程为m为常数)

1)求曲线C1C2的直角坐标方程;

2)若曲线C1C2有两个交点PQ,当|PQ|时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数fx=,其中a>0.

)若a=1,求曲线y=fx)在点(2f2))处的切线方程;

)若在区间上,fx>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1的顶点在坐标原点,准线为x=﹣3,圆C2:(x32+y21,过圆心C2的直线l与抛物线C1交于点ABl与圆C2交于点MN,且|AM||AN|,则|AM||BM|的最小值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元前世纪的毕达哥拉斯是最早研究完全数的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合中随机抽取两个数,则这两个数中有完全数的概率是______.

查看答案和解析>>

同步练习册答案