如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
【解析】
试题分析:过S点作SD⊥AC于D,过D作DM⊥AB于M,连SM
∵平面SAC⊥平面ACB
∴SD⊥平面ACB
∴SM⊥AB
又∵DM⊥AB
∴∠DMS为二面角S-AB-C的平面角
在ΔSAC中SD=4×
在ΔACB中过C作CH⊥AB于H
∵AC=4,BC=
∴AB=
∵S=1/2AB·CH=1/2AC·BC
∴CH=
∵DM∥CH且AD=DC
∴DM=1/2CH=
∵SD⊥平面ACB DMÌ平面ACB
∴SD⊥DM
在RTΔSDM中
SM===
∴cos∠DMS===
考点:线面垂直关系及二面角
点评:先作出二面角的平面角。由面面垂直可得线面垂直,作SD⊥平面ACB,然后利用三垂线定理作出二面角的平面角
科目:高中数学 来源:2015届江苏省高一下学期期末考试数学试卷(解析版) 题型:解答题
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东省聊城市四县六校联考高一(下)期末数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com