精英家教网 > 高中数学 > 题目详情

【题目】在几何体中,底面为菱形,相交于点,四边形为直角梯形,,面.

(1)证明:面

(2)求二面角的余弦值.

【答案】(1)详见解析;(2).

【解析】

1)由底面为菱形,可得,结合面面垂直的性质可得平面,从而得到,又,得到平面,利用勾股定理证得,由线面垂直的判定定理证得平面,利用面面垂直的判定定理证得平面平面

2)取EF中点G,由题意可知,,则平面,分别以OA,OB,OG所在直线为轴建立空间直角坐标系,分别求出平面AFC与平面AEC的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.

(1)因为底面为菱形,所以

又平面底面,平面平面

因此平面,从而.

,所以平面,

可知

从而,故

,所以平面.

平面,所以平面平面.

(2)取中点,由题可知,所以平面

又在菱形中,

分别以的方向为轴正方向建立空间直角坐标系(如图示),

.

所以

.

由(1)可知平面,所以平面的法向量可取为

设平面的法向量为,则

,得,所以.

从而.由图可知,所求二面角的大小为锐角,

故所求的二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四边形是矩形,,将沿着对角线AC翻折,得到,设顶点在平面上的投影为O.

1)若点O恰好落在边AD上,①求证:平面;②若,当BC取到最小值时,求k的值;

2)当时,若点O恰好落在的内部(不包括边界),求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,MDABCDNBABCD.且MDNB1.则下列结论中:

MCAN

DB∥平面AMN

③平面CMN⊥平面AMN

④平面DCM∥平面ABN

所有假命题的个数是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Ax1y1),Dx2y2)其中(x1x2)是曲线y29xy≥0).上的两点,AD两点在x轴上的射影分别为点BC|BC|3

(Ⅰ)当点B的坐标为(10)时,求直线AD的方程:

(Ⅱ)记AOD的面积为S1,梯形ABCD的面积为S2,求的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,中点,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是( )

A. 平面

B. 异面直线所成的角为

C. 异面直线所成的角为

D. 直线与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,其中是自然常数, .

(1)当时,求的极值,并证明恒成立;

(2)是否存在实数,使的最小值为 ?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.某学校为了了解高一年级200名学生选考科目的意向,随机选取20名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有5

5

5

2

1

2

0

选考方案待确定的有7

6

4

3

2

4

2

女生

选考方案确定的有6

3

5

2

3

3

2

选考方案待确定的有2

1

2

1

0

1

1

(1)在选考方案确定的男生中,同时选考物理、化学、生物的人数有多少?

(2)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,ACBD=O,△PAC是边长为2的等边三角形,

1)求四棱锥P-ABCD的体积VP-ABCD

2)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案