精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 过点,且两个焦点的坐标分别为 .

(1)求的方程;

(2)若 上的三个不同的点, 为坐标原点,且,求证:四边形的面积为定值.

【答案】(1) ;(2)证明见解析.

【解析】试题分析】(1)通过椭圆的定义求得,,由此求得,进而求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,代入,利用弦长公式求得,利用点到直线的距离公式求得原点到直线的距离,由此求得四边形的面积.

试题解析】

(1)由已知得

,则的方程为

(2)当直线的斜率不为零时,可设代入得:

,则

,由,得

∵点在椭圆上,∴,即,∴

原点到直线的距离为.

∴四边形的面积: .

的斜率为零时,四边形的面积

∴四边形的面积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件取出的两球同色取出的2球中至少有一个黄球取出的2球至少有一个白球取出的两球不同色取出的2球中至多有一个白球”.下列判断中正确的序号为________.

为对立事件;②是互斥事件;③是对立事件:④;⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义在上且满足下列两个条件:

①对任意都有;

②当时,有

(1)求,并证明函数上是奇函数;

(2)验证函数是否满足这些条件;

(3)若,试求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且ABBP2,AD=AE=1,AEAB,且AEBP

(1)求平面PCD与平面ABPE所成的二面角的余弦值;

(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:

(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)

(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论的单调性

(2)若存在正数,使得当,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某代卖店代售的某种快餐,深受广大消费者喜爱,该种快餐每份进价为8元,并以每份12元的价格销售.如果当天19:00之前卖不完,剩余的该种快餐每份以5元的价格作特价处理,且全部售完.

(1)若这个代卖店每天定制15份该种快餐,求该种类型快餐当天的利润y(单位:元)关于当天需求量x(单位:份,)的函数解析式;

(2)该代卖点记录了一个月30天的每天19:00之前的销售数量该种快餐日需求量,统计数据如下:

日需求量

12

13

14

15

16

17

天数

4

5

6

8

4

3

以30天记录的日需求量的频率作为日需求量发生的概率,假设这个代卖店在这一个月内每天都定制15份该种快餐.

(i)求该种快餐当天的利润不少于52元的概率.

(ii)求这一个月该种快餐的日利润的平均数(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,点的中点

(1)求证:平面

(2)若平面 平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若函数上的最大值为1,求的值;

(2)若存在使得关于的不等式成立,求的取值范围.

查看答案和解析>>

同步练习册答案