精英家教网 > 高中数学 > 题目详情
已知定义在[-3,3]上的函数 ,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.
【答案】分析:(1)求出函数的导数,研究函数f(x)在[-2,0]上的单调性,确定出最值的位置,求出最值及取得最值时的自变量;
(2)t≥6时,研究函数的单调性,求出函数在定义在[-3,3]上最大值,将此最值与8比较即可得出所要证明的结论成立与否
解答:解:(1)f'(x)=t-
∵2≤t≤6∴
x-
f'(x)-+-
f(x)极小值极大值
时,即t=6时,f(x)在上是增函数,
即2<t<6时,f(x)在减,在上增
∴f(x)在[-2,0]上最小值为,此时x=-
(2)由(1)可知f(x)在上增,
时,f(x)在[-3,3]上最大值为f(3)=3t-=27>8
时,f(x)在[0,3]上最大值为,=8
又f(0)=0,
∴y=f(x)的图象上至少有一点在直线y=8上
点评:本题考查利用导数求闭区间上的最值,解题的关键是利用导数研究清楚函数的单调性,确定出最值取到的位置,求出最值,本题第二小题将图象在直线上方的问题转化为函数值的比较,解题时注意这一技巧的运用,本题运算量比较大,解题时要注意严谨运算,莫因为运算出错导致解题失败
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在[-3,3]上的函数y=f(x)满足条件:对于任意的x,y∈R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)<0.
(1)求证:函数f(x)是奇函数;
(2)求证:函数f(x)在[-3,3]上是减函数;
(3)解不等式f(2x-1)+f(3x+2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[-3,3]上的函数 y=tx-
12
x3
,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在[-3,3]上的函数 数学公式,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在[-3,3]上的函数 y=tx-
1
2
x3
,(t为常数).
(1)当t∈[2,6]时,求f(x)在[-2,0]上的最小值及取得最小值时的x;
(2)当t≥6时,证明函数y=f(x)的图象上至少有一点在直线y=8上.

查看答案和解析>>

同步练习册答案