【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根据7至11月份的数据,求出关于的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程,其中,参考数据: .
科目:高中数学 来源: 题型:
【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:
(1)试估算该校高三年级学生获得成绩为的人数;
(2)若等级、、、、分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?
(3)为了解心理健康状态稳定学生的特点,现从、两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若不等式f(x)<0对任意x∈(1,+∞)恒成立. (ⅰ)求实数a的取值范围;
(ⅱ)试比较ea﹣2与ae﹣2的大小,并给出证明(e为自然对数的底数,e=2.71828).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点也是椭圆: ()的一个焦点, 与的公共弦长为.
(Ⅰ)求的方程
(Ⅱ)过点的直线与相交于, 两点,与相交于, 两点,且, 同向.若求直线的斜率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,求:
(1)若l1⊥l2 , 求m的值;
(2)若l1∥l2 , 求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四面体ABCD中,AB和CD为对棱.设AB=a,CD=b,且异面直线AB与CD间的距离为d,夹角为θ.
(Ⅰ)若θ= ,且棱AB垂直于平面BCD,求四面体ABCD的体积;
(Ⅱ)当θ= 时,证明:四面体ABCD的体积为一定值;
(Ⅲ)求四面体ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=2BB1=2BC,E为D1C1的中点,连结ED,EC,EB和DB.
(Ⅰ)证明:A1D1∥平面EBC;
(Ⅱ)证明:平面EDB⊥平面EBC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com