精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较 和ex1+a哪个更靠近lnx,并说明理由.

【答案】
(1)解:f′(x)=f′(1)e2x2+2x﹣2f(0),所以f′(1)=f′(1)+2﹣2f(0),即f(0)=1.又

所以f′(1)=2e2,所以f(x)=e2x+x2﹣2x.


(2)解:∵f(x)=e2x﹣2x+x2

∴g′(x)=ex﹣a.

①当a≤0时,g′(x)>0,函数f(x)在R上单调递增;

②当a>0时,由g′(x)=ex﹣a=0得x=lna,

∴x∈(﹣∞,lna)时,g′(x)<0,g(x)单调递减;x∈(lna,+∞)时,g′(x)>0,g(x)单调递增.

综上,当a≤0时,函数g(x)的单调递增区间为(∞,∞);

当a>0时,函数g(x)的单调递增区间为(lna,+∞),单调递减区间为(﹣∞,lna)


(3)解:解:设 ,∵ ,∴p(x)在x∈[1,+∞)上为减函数,又p(e)=0,∴当1≤x≤e时,p(x)≥0,当x>e时,p(x)<0.∵ ,∴q′(x)在x∈[1,+∞)上为增函数,又q′(1)=0,∴x∈[1,+∞)时,q'(x)≥0,∴q(x)在x∈[1,+∞)上为增函数,∴q(x)≥q(1)=a+1>0.

① 当1≤x≤e时,

,则 ,∴m(x)在x∈[1,+∞)上为减函数,

∴m(x)≤m(1)=e﹣1﹣a,

∵a≥2,∴m(x)<0,∴|p(x)|<|q(x)|,∴ 比ex1+a更靠近lnx.

②当x>e时,

设n(x)=2lnx﹣ex1﹣a,则 ,∴n′(x)在x>e时为减函数,

,∴n(x)在x>e时为减函数,∴n(x)<n(e)=2﹣a﹣ee1<0,

∴|p(x)|<|q(x)|,∴ 比ex1+a更靠近lnx.

综上:在a≥2,x≥1时, 比ex1+a更靠近lnx


【解析】(1)求出函数的导数,利用赋值法,求出f′(1)=f′(1)+2﹣2f(0),得到f(0)=1.然后求解f′(1),即可求出函数的解析式.(2)求出函数的导数g′(x)=ex+a,结合a≥0,a<0,分求解函数的单调区间即可.(3)构造 ,通过函数的导数,判断函数的单调性,结合当1≤x≤e时,当1≤x≤e时,推出|p(x)|<|q(x)|,说明 比ex1+a更靠近lnx.当x>e时,通过作差,构造新函数,利用二次求导,判断函数的单调性,证明 比ex1+a更靠近lnx.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数),且曲线在点处的切线平行于轴.

(1)求的值;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,若f(x)=mn. (I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnx﹣2ax)有两个极值点,则实数a的取值范围是(
A.(﹣∞,
B.(0,
C.(0,
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.

(1)若A∩B=,求实数a的取值范围;

(2)若¬p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆以原点为圆心,且圆与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)若直线与圆交于两点,分别过两点作直线的垂线,交轴于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球谁赢. 如果甲先抓,那么下列推断正确的是(

A. =4,则甲有必赢的策略 B. =6,则乙有必赢的策略

C. =9,则甲有必赢的策略 D. =11,则乙有必赢的策略

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)当时,若不等式恒成立,求实数的取值范围;

(3)若,证明.

查看答案和解析>>

同步练习册答案