【题目】定义在R上的函数f(x)满足 , .
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较 和ex﹣1+a哪个更靠近lnx,并说明理由.
【答案】
(1)解:f′(x)=f′(1)e2x﹣2+2x﹣2f(0),所以f′(1)=f′(1)+2﹣2f(0),即f(0)=1.又 ,
所以f′(1)=2e2,所以f(x)=e2x+x2﹣2x.
(2)解:∵f(x)=e2x﹣2x+x2,
∴ ,
∴g′(x)=ex﹣a.
①当a≤0时,g′(x)>0,函数f(x)在R上单调递增;
②当a>0时,由g′(x)=ex﹣a=0得x=lna,
∴x∈(﹣∞,lna)时,g′(x)<0,g(x)单调递减;x∈(lna,+∞)时,g′(x)>0,g(x)单调递增.
综上,当a≤0时,函数g(x)的单调递增区间为(∞,∞);
当a>0时,函数g(x)的单调递增区间为(lna,+∞),单调递减区间为(﹣∞,lna)
(3)解:解:设 ,∵ ,∴p(x)在x∈[1,+∞)上为减函数,又p(e)=0,∴当1≤x≤e时,p(x)≥0,当x>e时,p(x)<0.∵ , ,∴q′(x)在x∈[1,+∞)上为增函数,又q′(1)=0,∴x∈[1,+∞)时,q'(x)≥0,∴q(x)在x∈[1,+∞)上为增函数,∴q(x)≥q(1)=a+1>0.
① 当1≤x≤e时, ,
设 ,则 ,∴m(x)在x∈[1,+∞)上为减函数,
∴m(x)≤m(1)=e﹣1﹣a,
∵a≥2,∴m(x)<0,∴|p(x)|<|q(x)|,∴ 比ex﹣1+a更靠近lnx.
②当x>e时, ,
设n(x)=2lnx﹣ex﹣1﹣a,则 , ,∴n′(x)在x>e时为减函数,
∴ ,∴n(x)在x>e时为减函数,∴n(x)<n(e)=2﹣a﹣ee﹣1<0,
∴|p(x)|<|q(x)|,∴ 比ex﹣1+a更靠近lnx.
综上:在a≥2,x≥1时, 比ex﹣1+a更靠近lnx
【解析】(1)求出函数的导数,利用赋值法,求出f′(1)=f′(1)+2﹣2f(0),得到f(0)=1.然后求解f′(1),即可求出函数的解析式.(2)求出函数的导数g′(x)=ex+a,结合a≥0,a<0,分求解函数的单调区间即可.(3)构造 ,通过函数的导数,判断函数的单调性,结合当1≤x≤e时,当1≤x≤e时,推出|p(x)|<|q(x)|,说明 比ex﹣1+a更靠近lnx.当x>e时,通过作差,构造新函数,利用二次求导,判断函数的单调性,证明 比ex﹣1+a更靠近lnx.
科目:高中数学 来源: 题型:
【题目】已知向量 ,若f(x)=mn. (I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.
(1)若A∩B=,求实数a的取值范围;
(2)若¬p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).
(1)当甲城市投资50万元时,求此时公司总收益;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁抓到最后一个球谁赢. 如果甲先抓,那么下列推断正确的是( )
A. 若=4,则甲有必赢的策略 B. 若=6,则乙有必赢的策略
C. 若=9,则甲有必赢的策略 D. 若=11,则乙有必赢的策略
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com