精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象是开口向下的抛物线,且对任意x∈R,都有f(1-x)=f(1+x),若向量
a
=(log
1
2
m,  -1),
b
=(1,-2)
,则满足不等式f(
a
b
)<f(-1)
的实数m的取值范围是
 
分析:先从条件“对任意x∈R,都有f(1-x)=f(1+x)”得到对称轴,然后结合图象把不等式中的f去掉,得不等式,不等式利用绝对值的定义去掉绝对值符号,把常数写成同底的对数,根据对数函数的单调性求解.
解答:解:∵对任意x∈R,都有f(1-x)=f(1+x),∴函数y=f(x)的图象是以x=1为对称轴的开口向下的抛物线,
a
b
=log
1
2
m
+2,∴|log
1
2
m
+2-1|>|-1-1|,∴|log
1
2
m
+1|>2,∴log
1
2
m
>1或log
1
2
m
<-3,
log
1
2
m
log
1
2
1
2
log
1
2
m
log
1
2
8
,∴0<m<
1
2
或m>8.
故答案为(0,
1
2
)∪(8,+∞).
点评:本题关键找出抛物线的对称轴,结合开口向下去掉f,得不等式,解不等式时,去掉绝对值符号利用定义,若不等式一边是对数式,另一边是常数,把这个常数转为同底的对数,根据对数函数的单调性求解,用到数形结合与转化化归的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案