精英家教网 > 高中数学 > 题目详情
7.计算下列各式的值
(Ⅰ)lg24-lg3-lg4+lg5
(Ⅱ)${(\root{3}{3}•\sqrt{2})^6}+{(\sqrt{3\sqrt{3}})^{\frac{4}{3}}}-\root{4}{2}×{8^{0.25}}-{(2015)^0}$.

分析 (Ⅰ)直接利用对数的运算性质化简求值;
(Ⅱ)化根式为分数指数幂,然后利用有理指数幂的运算性质化简求值.

解答 解:(Ⅰ)lg24-lg3-lg4+lg5
=lg3×23-lg3-lg4+lg5
=lg3+3lg2-lg3-2lg2+lg5
=lg2+lg5
=1.
(Ⅱ)${(\root{3}{3}•\sqrt{2})^6}+{(\sqrt{3\sqrt{3}})^{\frac{4}{3}}}-\root{4}{2}×{8^{0.25}}-{(2015)^0}$
=${3}^{2}•{2}^{3}+({3}^{\frac{3}{4}})^{\frac{4}{3}}-{2}^{\frac{1}{4}}•({2}^{3})^{\frac{1}{4}}-1$
=72+3-2-1
=72.

点评 本题考查对数的运算性质,考查了有理指数幂的化简与求值,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知正实数a,b满足$\frac{asin\frac{π}{5}+bcos\frac{π}{5}}{acos\frac{π}{5}-bsin\frac{π}{5}}$=tan$\frac{8π}{15}$,则$\frac{b}{a}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增,则f(-3),f(-4)的大小关系是(  )
A.f (-3)>f (-4)B.f (-3)<f (-4)C.f (-3)=f (-4)D.无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\int_1^2{({x-a})}dx=\int_0^{\frac{3π}{4}}{cos2xdx}$,则a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=ln(x+2)-\frac{2}{x}$的零点所在的区间是(  )
A.(3,4)B.(2,e)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l的斜率k=x2+1(x∈R),则直线l的倾斜角α的范围为$[\frac{π}{4},\frac{π}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设n是一个正整数,定义n个实数a1,a2,…,an的算术平均值为$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$.设集合 M={1,2,3,…,2015},对 M的任一非空子集 Z,令αz表示 Z中最大数与最小数之和,那么所有这样的αz的算术平均值为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个正方体内接于半径为R的球,则该正方体的体积是(  )
A.2$\sqrt{2}$R3B.$\frac{4}{3}$πR3C.$\frac{8}{9}$$\sqrt{3}$R3D.$\frac{\sqrt{3}}{9}$R3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设O是抛物线的顶点,F为焦点,PQ是抛物线的过F的弦,若|OF|=a,|PQ|=b,求△OPQ的面积.

查看答案和解析>>

同步练习册答案