精英家教网 > 高中数学 > 题目详情
(2013•江苏一模)已知F1,F2是双曲线的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此双曲线上,则此双曲线的离心率为
3
+1
3
+1
分析:根据A是正三角形MF1F2的边MF1的中点,得到△AF1F2是直角三角形,设F1F2=2c,可得AF1=c,AF2=
3
c,最后根据双曲线的定义,得2a=|AF1-AF2|=(
3
-1)c,利用双曲线的离心率的公式,可得该双曲线的离心率.
解答:解:设双曲线的方程为
x2
a2
-
y2
b2
=1(a>0,b>0),
∵线段F1F2为边作正三角形△MF1F2
∴MF1=F1F2=2c,(c是双曲线的半焦距)
又∵MF1的中点A在双曲线上,
∴Rt△AF1F2中,AF1=c,AF2=
F1F22-AF12
=
3
c,
根据双曲线的定义,得2a=|AF1-AF2|=(
3
-1)c,
∴双曲线的离心率e=
2c
2a
=
2c
(
3-1
) c
=
3
+1.
故答案为:
3
+1.
点评:本题给出以双曲线的焦距为边长的等边三角形,其一边中点在双曲线上,求该双曲线的离心率,着重考查了双曲线的定义与简单几何性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江苏一模)已知cos(75°+α)=
1
3
,则cos(30°-2α)的值为
7
9
7
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且
Sn
Tn
=
2n+1
4n-2
,(n∈N+)则
a10
b3+b18
+
a11
b6+b15
=
41
78
41
78

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)若对于给定的正实数k,函数f(x)=
k
x
的图象上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为2,则k的取值范围是
(0,
9
2
(0,
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知全集U={1,2,3,4,5,6},A={1,3,5},B={1,2,3,5},则?U(A∩B)=
{2,4,6}
{2,4,6}

查看答案和解析>>

同步练习册答案