Éè{an}ÊǵȲîÊýÁУ¬{bn}ÊǸ÷ÏΪÕýÊýµÄµÈ±ÈÊýÁУ¬ÇÒa1=b1=1£¬a2+b3=a3+b2=7£®
£¨1£©Çó{an}£¬{bn}µÄͨÏʽ£»
£¨2£©¼Çcn=an-2010£¬n¡ÊN*£¬AnΪÊýÁÐ{cn}µÄÇ°nÏîºÍ£¬µ±nΪ¶àÉÙʱAnÈ¡µÃ×î´óÖµ»ò×îСֵ£¿
£¨3£©£¨Àí£©ÊÇ·ñ´æÔÚÕýÊýK£¬Ê¹µÃ(1+
1
a1
)(1+
1
a2
)¡­(1+
1
an
)¡ÝK
2n+1
¶ÔÒ»ÇÐn¡ÊN*¾ù³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öKµÄ×î´óÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨4£©£¨ÎÄ£©ÇóÊýÁÐ{
an
bn
}
µÄÇ°nÏîºÍSn£®
·ÖÎö£º£¨1£©ÏÈÉ蹫²îÊÇd£¬¹«±ÈÊÇq£¬¸ù¾Ýa1=b1=1£¬a2+b3=a3+b2=7£¬Áгö¹ØÓÚd¡¢qµÄ·½³Ì×飬½â³öd¡¢q¼´¿ÉÇó³öÇóan£¬bnµÄͨÏʽ£»
£¨2£©µ±cn¡Ý0£¬Çó³ön¡Ý1005.5£¬µ±cn£¾0£¬n¡Ý1006£¬½ø¶ø¿ÉÖªµ±n=1005ʱ£¬AnÈ¡µÃ×îСֵ£»
£¨3£©ÒòΪK¡Ü
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)
µÈ¼ÛÓÚK¡ÜF£¨n£©min£¬ÆäÖÐF(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)
£¬Ñо¿Æäµ¥µ÷µÃ³öF£¨n£©ÊǵÝÔöµÄ£¬´Ó¶øK¡ÜF(n)min=F(1)=
2
3
3

£¨4£©ÓÉÓÚ
an
bn
=
2n-1
2n-1
£®Sn=1+
3
21
+
5
22
+¡­+
2n-3
2n-2
+
2n-1
2n-1
ÀûÓôíλÏà¼õ·¨ÇóµÃSn=6-
2n+3
2n-1
£»
½â´ð£º½â£º£¨1£©ÉèanµÄ¹«²îΪd£¬bnµÄ¹«±ÈΪq£¬ÔòÒÀÌâÒâÓÐq£¾0ÇÒ
1+d+q2=7
1+2d+q=7

½âµÃd=2£¬q=2£®£¨2·Ö£©
ËùÒÔan=1+£¨n-1£©d=2n-1£¬bn=qn-1=2n-1£®£¨2·Ö£©
£¨2£©ÒòΪcn=an-2010=2n-2011¡Ý0?n¡Ý1005.5£¬ËùÒÔ£¬µ±1¡Ün¡Ü1005ʱ£¬cn£¼0£¬µ±n¡Ý1006ʱ£¬cn£¾0£®£¨2·Ö£©
ËùÒÔµ±n=1005ʱ£¬AnÈ¡µÃ×îСֵ£®£¨2·Ö£©
£¨3£©K¡Ü
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)
µÈ¼ÛÓÚK¡ÜF£¨n£©min£¬
ÆäÖÐF(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)(1+
1
an
)
£»£¨2·Ö£©
ÒòΪ£ºF(n+1)-F(n)=(1+
1
a1
)(1+
1
a2
)(1+
1
an
)[
1
2n+3
(1+
1
2n+1
)-
1
2n+1
]£¾0?
1
2n+3
2n+2
2n+1
)£¾
1
2n+1
?
1
2n+3
2n+2
2n+1
)£¾1?2n+2£¾
2n+3
2n+1
?4n2+8n+4£¾4n2+8n+3?4£¾3ÏÔÈ»³ÉÁ¢£¬ËùÒÔF£¨n£©ÊǵÝÔöµÄ£®£¨4·Ö£©
´Ó¶øK¡ÜF(n)min=F(1)=
2
3
3
£®£¨2·Ö£©
»òÒòΪ£º
F(n+1)
F(n)
=
2n+2
(2n+3)(2n+1)
=
2(n+1)
4(n+1)2-1
£¾
2(n+1)
2(n+1)
=1
£¬
ËùÒÔ£ºF£¨n£©ÊǵÝÔöµÄ£®£¨4·Ö£©£»
´Ó¶øK¡ÜF(n)min=F(1)=
2
3
3
£®£¨2·Ö£©
£¨4£©
an
bn
=
2n-1
2n-1
£®Sn=1+
3
21
+
5
22
+¡­+
2n-3
2n-2
+
2n-1
2n-1
¢Ù£¨2·Ö£©
2Sn=2+3+
5
2
+¡­+
2n-3
2n-3
+
2n-1
2n-2
¢Ú
¢Ú-¢ÙµÃSn=2+2+
2
2
+
2
22
++
2
2n-2
-
2n-1
2n-1
£¨2·Ö£©
=2+2¡Á(1+
1
2
+
1
22
+¡­+
1
2n-2
)-
2n-1
2n-1
=2+2¡Á
1-
1
2n-1
1-
1
2
-
2n-1
2n-1
£¨3·Ö£©
=6-
2n+3
2n-1
£®£¨1·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐͨÏʽºÍÇ°nÏîºÍµÄÇó·¨ÒÔ¼°ÊýÁеÄ×îÖµÎÊÌ⣬¶ÔÓڵȲîÊýÁк͵ȱÈÊýÁÐÏà³ËÐÎʽÊýÁУ¬Ò»°ã²ÉÈ¡´íλÏà¼õµÄ°ì·¨ÇóÊýÁеÄÇ°nÏîºÍ£¬Ò»¶¨ÒªÊìÁ·ÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬bn=£¨
1
2
£©an£®ÒÑÖªb1+b2+b3=
21
8
£¬b1b2b3=
1
8
£®ÇóµÈ²îÊýÁеÄͨÏîan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬a1+a3+a5=9£¬a6=9£®ÔòÕâ¸öÊýÁеÄÇ°6ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A¡¢12B¡¢24C¡¢36D¡¢48

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

1¡¢Éè{an}ÊǵȲîÊýÁУ¬ÇÒa1+a5=6£¬Ôòa3µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•»ÝÖÝÄ£Ä⣩Éè{an}ÊǵȲîÊýÁУ¬ÇÒa2+a3+a4=15£¬ÔòÕâ¸öÊýÁеÄÇ°5ÏîºÍS5=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬a1£¾0£¬a2007+a2008£¾0£¬a2007•a2008£¼0£¬ÔòʹSn£¾0³ÉÁ¢µÄ×î´ó×ÔÈ»ÊýnÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸