精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;

(2)求曲线与曲线交点的极坐标.

【答案】(1)曲线的普通方程为)曲线的直角坐标方程为.(2)交点极坐标为.

【解析】试题分析:(1)先求出t,再代入消元将曲线的参数方程化为普通方程,根据将 曲线的极坐标方程化为直角坐标方程;(2)先求曲线与曲线交点的直角坐标,再化为极坐标.

试题解析:解:(1)∵,∴,即

,∴,∴

∴曲线的普通方程为).

,∴,∴,即曲线的直角坐标方程为.

(2)由

(舍去),

则交点的直角坐标为,极坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一元二次函数的图像与轴有两个不同的交点,其中一个交点的坐标为且当,恒有

(1)求出不等式的解(表示)

(2)若以二次函数的图像与坐标轴的三个交点为顶点的三角形的面积为8,的取值范围;

(3)若不等式对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设区间,定义在上的函数),集合

(1)若,求集合

(2)设常数

① 讨论的单调性;

② 若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的全面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C的顶点在坐标原点,对称轴为x轴,抛物线C过点A(4,4),过抛物线C的焦点F作倾斜角等于45°的直线l,直线l交抛物线C于M、N两点.

(1)求抛物线C的方程;

(2)求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有( )

A. 6种 B. 24种 C. 30种 D. 36种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.

学生日均使用手机时间的频数分布表

时间分组

频数

[0,20

12

[20,40

20

[40,60

24

[60,80

18

[80,100

22

[100,120]

4

1将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.

2在高的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?

非手机迷

手机迷

合计

合计

附:随机变量其中为样本总量

参考数据

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A10)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中αβ180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求αβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

查看答案和解析>>

同步练习册答案