精英家教网 > 高中数学 > 题目详情

已知函数的图象在点处的切线斜率为
(Ⅰ)求实数的值;
(Ⅱ)判断方程根的个数,证明你的结论;
(Ⅲ)探究:是否存在这样的点,使得曲线在该点附近的左、右的两部分分别位于曲线在该点处切线的两侧?若存在,求出点A的坐标;若不存在,说明理由.

(1)
(2)方程有且只有一个实根.
(3)存在唯一点使得曲线在点附近的左、右两部分分别
位于曲线在该点处切线的两侧.

解析试题分析:解法一:(Ⅰ)因为,所以
函数的图象在点处的切线斜率
得:.                    4分
(Ⅱ)由(Ⅰ)知,,令
因为,所以至少有一个根.
又因为,所以上递增,
所以函数上有且只有一个零点,即方程有且只有一
个实根.                         7分
(Ⅲ)证明如下:
,可求得曲线在点处的切
线方程为
.                    8分


.               11分
(1)当,即时,对一切成立,
所以上递增.
,所以当,当
即存在点,使得曲线在点A附近的左、右两部分分别位于曲线
在该点处切线的两侧.                   12分
(2)当,即时,
时,时,
时,
上单调递减,在上单调递增.
,所以当时,;当时,
即曲线在点附近的左、右两部分都位于曲线在该点处切线的
同侧.                                   13分
(3)当,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(其中),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 函数
(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以为对称中心,求实数的值
(2)若,求函数在闭区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,试求函数的单调区间;
(2)过坐标原点作曲线的切线,证明:切点的横坐标为1;
(3)令,若函数在区间(0,1]上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)若,证明
(2)若不等式都恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导数为实数,.
(Ⅰ)若在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,试判断函数的极值点个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,直线与函数的图象都相切,且与函数的图象的切点的横坐标为.
(Ⅰ)求直线的方程及的值;
(Ⅱ)若(其中的导函数),求函数的最大值;
(Ⅲ)当时,求证:.

查看答案和解析>>

同步练习册答案