已知函数的图象在点处的切线斜率为.
(Ⅰ)求实数的值;
(Ⅱ)判断方程根的个数,证明你的结论;
(Ⅲ)探究:是否存在这样的点,使得曲线在该点附近的左、右的两部分分别位于曲线在该点处切线的两侧?若存在,求出点A的坐标;若不存在,说明理由.
(1)
(2)方程有且只有一个实根.
(3)存在唯一点使得曲线在点附近的左、右两部分分别
位于曲线在该点处切线的两侧.
解析试题分析:解法一:(Ⅰ)因为,所以,
函数的图象在点处的切线斜率.
由得:. 4分
(Ⅱ)由(Ⅰ)知,,令.
因为,,所以在至少有一个根.
又因为,所以在上递增,
所以函数在上有且只有一个零点,即方程有且只有一
个实根. 7分
(Ⅲ)证明如下:
由,,可求得曲线在点处的切
线方程为,
即. 8分
记
,
则. 11分
(1)当,即时,对一切成立,
所以在上递增.
又,所以当时,当时,
即存在点,使得曲线在点A附近的左、右两部分分别位于曲线
在该点处切线的两侧. 12分
(2)当,即时,
时,;时,;
时,.
故在上单调递减,在上单调递增.
又,所以当时,;当时,,
即曲线在点附近的左、右两部分都位于曲线在该点处切线的
同侧. 13分
(3)当,即
科目:高中数学 来源: 题型:解答题
已知函数,(其中,),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究与的大小,并说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)若,试求函数的单调区间;
(2)过坐标原点作曲线的切线,证明:切点的横坐标为1;
(3)令,若函数在区间(0,1]上是减函数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的导数为实数,.
(Ⅰ)若在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,试判断函数的极值点个数。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,,直线与函数、的图象都相切,且与函数的图象的切点的横坐标为.
(Ⅰ)求直线的方程及的值;
(Ⅱ)若(其中是的导函数),求函数的最大值;
(Ⅲ)当时,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com