精英家教网 > 高中数学 > 题目详情
14.计算下列各式的值:
(1)($\frac{1}{16}$)-${\;}^{\frac{3}{4}}$-4•(-2)-3+($\sqrt{π}$)0-$\root{3}{\frac{27}{8}}$
(2)若lg2=a,10b=3,试用a,b表示log46.

分析 (1)利用有理数指数幂的性质和运算法则求解.
(2)利用对数的性质、运算法则及换底公式求解.

解答 解:(1)($\frac{1}{16}$)-${\;}^{\frac{3}{4}}$-4•(-2)-3+($\sqrt{π}$)0-$\root{3}{\frac{27}{8}}$
=$[(\frac{1}{2})^{4}]^{-\frac{3}{4}}-4×(-\frac{1}{8})+1-\frac{3}{2}$
=8+$\frac{1}{2}+1-\frac{3}{2}$
=8.
(2)∵lg2=a,10b=3,∴lg3=b,
∴log46=$\frac{lg2+lg3}{2lg2}$=$\frac{a+b}{2a}$.

点评 本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意有理数指幂、对数性质、运算法则及换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知圆C的圆心在直线y=2x上,并且过点A(0,1)和B(0,3).
(1)求圆C的方程.
(2)若点P是圆C上的动点,坐标原点为O,求直线OP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\left\{\begin{array}{l}-x-3a(x<0)\\{a^x}-2(x≥0)\end{array}$,(a>0且a≠1)是R上的减函数,则a的取值范围是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.动圆C经过定点F(2,0)且与直线x+2=0相切,则动圆的圆心C的轨迹方程是(  )
A.x=2B.y=2C.y2=8xD.x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的标准方程;
(2)已知直线y=kx-1,当直线与抛物线有公共点时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对m∈R,直线与圆C总有两个不同的交点A、B;
(2)若定点P(1,1)满足$\overrightarrow{PB}=2\overrightarrow{AP}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它们的相关指数R2如下,其中拟合效果最好的模型是(  )
A.模型1的相关指数R2为0.25B.模型2的相关指数R2为0.87
C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.97

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知n为正整数,在${(1-\sqrt{x})^{2n}}$与(1+x)n展开式中x2项的系数相同,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若3a+4b=ab,a>0且b>0,则a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

查看答案和解析>>

同步练习册答案