精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的首项a1=$\frac{3}{4}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n=1,2,3…
(1)证明:数列{$\frac{1}{{a}_{n}}$-1}是等比数列;
(2)是否存在互不相等的正整数m,s,t成等差数列,且am-1,as-1,at-1成等比数列?如果存在,求出所有符合条件的m,s,t,如果不存在,请说明理由.

分析 (1)把已知数列递推式两边取倒数,然后利用构造法证明数列{$\frac{1}{{a}_{n}}$-1}是等比数列;
(2)由(1)求出数列{an}的通项公式,设存在互不相等的正整数m,s,t满足条件,代入am-1,as-1,at-1成等比数列,得到矛盾结论,说明不存在互不相等的正整数m,s,t满足题给的条件.

解答 (1)证明:∵an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,∴$\frac{1}{{a}_{n+1}}=\frac{1}{3}•\frac{1}{{a}_{n}}+\frac{2}{3}$,
∴$\frac{1}{{a}_{n+1}}-1=\frac{1}{3}(\frac{1}{{a}_{n}}-1)$,又a1=$\frac{3}{4}$,∴$\frac{1}{{a}_{1}}-1=\frac{1}{3}$,
∴数列{$\frac{1}{{a}_{n}}$-1}是以$\frac{1}{3}$为首项,$\frac{1}{3}$为公比的等比数列;
(2)解:由(1)知$\frac{1}{{a}_{n}}-1=\frac{1}{3}•\frac{1}{{3}^{n-1}}=\frac{1}{{3}^{n}}$,即$\frac{1}{{a}_{n}}=\frac{1}{{3}^{n}}+1=\frac{{3}^{n}+1}{{3}^{n}}$,∴${a}_{n}=\frac{{3}^{n}}{{3}^{n}+1}$.
假设存在互不相等的正整数m,s,t满足条件,
则有(3s+1)2=(3m+1)(3t+1),
即32s+2×3s+1=3m+t+3m+3t+1,
∵2s=m+t,∴得3m+3t=2×3s
但是${3}^{m}+{3}^{t}≥2\sqrt{{3}^{m}×{3}^{t}}=2×{3}^{s}$,当且仅当m=t时等号成立,
这与m,s,t互不相等矛盾,
∴不存在互不相等的正整数m,s,t满足题给的条件.

点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列性质的用法,考查不等式基本性质的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cos2x+2sinxcosx-1,
(1)求f(x)的最小正周期;
(2)求f(x)在区间$[{-\frac{π}{4},\frac{π}{6}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市场经营一批进价为300元/件的商品,在市场试销中发现,此商品的日销售量y(件)与销售单价x(元)之间存在一次函数的关系,且销售单价为300元时,销售量是60件;销售单价为400元时,销售量是50件.
(1)求出y与x的函数关系式y=f(x);
(2)设经营此商品的日销售利润为w元,根据上述关系,写出w关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?最大日销售利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下向量中,可以作为直线$|{\begin{array}{l}1&0&1\\ x&2&1\\ y&1&1\end{array}}|=0$的一个方向向量是(  )
A.$\overrightarrow d=({1,-2})$B.$\overrightarrow d=({1,2})$C.$\overrightarrow d=({-2,1})$D.$\overrightarrow d=({2,1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,则该同学数学成绩的中位数为84.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知关于x的不等式ax2+2x+c>0的解集为$(-\frac{1}{3},\frac{1}{2})$,其中a,c∈R,则关于x的不等式-cx2+2x-a>0的解集是(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有1999个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1999个集合的并集有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\overrightarrow{a}$=(sinθ,$\sqrt{3}$),$\overrightarrow{b}$=(1,cosθ),其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|的范围是($\sqrt{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点为A(-2,0),过右焦点F且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线y=kx+m(k<0,m>0)与y轴交于点P,与x轴交于点Q,与椭圆C交于M,N两点,若$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{3}{|PQ|}$,求直线y=kx+m过定点,并求出这个定点坐标.

查看答案和解析>>

同步练习册答案