精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直三棱柱中,,点在线段.

1)若,求异面直线所成角的余弦值;

2)若直线与平面所成角为,试确定点的位置.

【答案】12)点M是线段的中点.

【解析】

1)以为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,得到,再代入向量夹角公式计算,即可得答案;

(2)设,得,直线与平面所成角为,得到关于的方程,解方程即可得到点的位置.

为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,则.

1)因为,所以.

所以.

所以.

所以异面直线所成角的余弦值为.

2)由

.

设平面的法向量为,由

,则,所以平面的一个法向量为.

因为点在线段上,所以可设,所以

因为直线与平面所成角为,所以.

,得

解得.

因为点在线段上,所以

即点是线段的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直线y轴交于点A,与抛物线交于P,Q,点B与点A关于x轴对称,连接QB,BP并延长分别与x轴交于点M,N.

(1),求抛物线C的方程;

(2)若,求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在四棱锥底面为平行四边形

∠ADC=45°,的中点,⊥平面的中点.

(1)证明:⊥平面

(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面分别是棱的中点.

1)证明:平面

2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知,B为AC的中点,分别以AB,AC为直径在AC的同侧作半圆,M,N分别为两半圆上的动点不含端点A,B,,且,则的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质对任意的,使得成立.

(1)分别判断数集是否具有性质,并说明理由;

(2)求证:

(2)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两个不重合的平面,在下列条件中,可判断平面平行的是(

A.是平面内两条直线,且

B.是两条异面直线,,且

C.内不共线的三点到的距离相等

D.都垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,且中点.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的最大值与最小值;

(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案