精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的焦点且斜率为的直线交抛物线两点,且

(1)求的值;

(2)抛物线上一点,直线(其中)与抛物线交于两个不同的点(均与点不重合),设直线的斜率分别为.动点在直线上,且满足,其中为坐标原点.当线段最长时,求直线的方程.

【答案】(1) (2)

【解析】

1)设直线方程为,联立抛物线方程由焦点弦长公式求解即可得P值;(2)直线与抛物线联立由结合韦达定理得直线恒过定点,利用得动点地轨迹为圆,利用圆的性质即可求最小值

1)抛物线的焦点为,设直线方程为

联立抛物线方程可得

故:

,解得

2)由(1)知抛物线方程为,从而点,设

,∴

可得,即

从而该式满足

即直线恒过定点

设动点,∵,∴

∴动点,故重合时线段最长,

此时直线,即:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,椭圆C:(a>b>0)离心率为,其短轴长为2.

(1)求椭圆C的标准方程;

(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k1,k2,且k1k2(λ,μ为非零实数),求λ22的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=Asin(ωx+)(A0,ω>0||)的部分图象如图所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若对于任意的x[0m]fx)≥1恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,且.

1)求的解析式,并判断零点的个数;

2)若,且对任意的恒成立,求k的最大值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义为两点AB的“切比雪夫距离”,又设点P上任意一点Q,的最小值为点P到直线的“切比雪夫距离”,记作,给出下列三个命题:

①对任意三点ABC,都有

②已知点P(2,1)和直线,

③定点动点P满足则点P的轨迹与直线(为常数)有且仅有2个公共点.

其中真命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ax2+a-2lnx+1aR).

1)若函数在点(1f1))处的切线平行于直线y=4x+3,求a的值;

2)令cx=fx+3-alnx+2a,讨论cx)的单调性;

3a=1时,函数y=fx)图象上的所有点都落在区域内,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面,,中点.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案