精英家教网 > 高中数学 > 题目详情
11.在平行四边形ABCD中,对角线AC、BD的交点为O,点P在△OBC内,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则x+y的取值范围是(  )
A.($\frac{1}{2}$,1)B.($\frac{1}{2}$,2)C.(1,$\frac{3}{2}$)D.(1,2)

分析 根据题意,画出图形,结合图形,得出P点在OB上时,x+y取得最小值,P点在点C处时,x+y取得最大值.

解答 解:如图所示,
平行四边形ABCD中,对角线AC、BD的交点为O,点P在△OBC内,
∵$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,
当P点在OB上时,x+y=1,是最小值;
当P点在点C处时,x+y=2,是最大值;
又点P在△OBC的内部,
∴x+y的取值范围是(1,2).
故选:D.

点评 本题考查了平面向量基本定理的应用问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|y=$\sqrt{\frac{1}{x+1}-1}$},B={x|[x-(a+1)]{x-(a+4)]<0}
(1)求集合A及集合B
(2)若B∩A=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个顶点分别是A(0,1),B(3,0),C(5,2),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,已知点O、A、B、C分别表示复数0,1+i,2+3i,3+2i,点P(x,y)在三边围成的区域(含边界)上.
(Ⅰ)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,求|$\overrightarrow{OP}$|;
(Ⅱ)设$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),用x,y表示m-n,并求m-n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为缓解高三同学的紧张情绪,某校举行高三跳绳友谊赛,高三(一)班的3个同学分别与(二)班的3个同学对阵已知每一场比赛(一)班同学胜(二)班同学的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{4}$.
(1)求两个班级的同学都至少胜一场的概率;
(2)求(一)班获胜场数X的分布列和数学期望值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.单位正方体ABCD-A1B1C1O在空间直角坐标系中的位置如图所示,动点M(a,a,0),N(0,b,1),其中0≤a≤1,0≤b≤1.设由M,N,O三点确定的平面截该正方体的截面为E,那么(  )
A.对任意点M,存在点N使截面E为三角形
B.对任意点M,存在点N使截面E为正方形
C.对任意点M和N,截面E都是梯形
D.对任意点N,存在点M使得截面E为矩形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴长为2,过点A(4,1)的直线交椭圆于两个不同点M,N,若直线上另一点B满足|$\overrightarrow{AM}$|•|$\overrightarrow{BN}$|=|$\overrightarrow{AN}$|•|$\overrightarrow{BM}$|.
(Ⅰ)求点B的轨迹方程;
(Ⅱ)若点B的轨迹交椭圆于两个不同点P、Q,求△APQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P(4,3),令点P与原点的距离保持不变,并绕原点旋转60°、120°、-60°到P1、P2、P3的位置,求点P1、P2、P3的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线y=kx+1与圆x2+y2=1交于A,B两点,若直线l经过点(-2,0)和线段AB的中点,求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

同步练习册答案