精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(
1
2
)x,(x≤0)
2f(x-1),(x>0)
,若方程f(x)=3x+a有且只有一个解,则实数a的取值范围是
 
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:画出函数图象,以及g(x)=3x+a的图象,从图象直观的找出有一个交点的自变量范围.
解答: 解:如图,

要使方程f(x)=3x+a有且只有一个解,只要函数f(x)的图象与g(x)=3x+a的图象只有一个交点即可,由图知,只要a≥4,或a<1即可.
故答案为:a≥4,或a<1.
点评:本题考查了数形结合的方法求方程根的个数问题,关键是正确画图,视图.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:如果一个数列从第二项起,每一项与前一项的差依次构成一个等比数列,则称这个数列为差等比数列,如果数列{an}满足an+1=3an-2an-1(n≥2),a1=1,a2=3.
(Ⅰ)求证:数列{an}是差等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)Sn是数列{an}的前n项和,如果对任意的正整数n(n≥4),不等式Sn≤kan-9k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求f(x)单调减区间;
(3)求函数f(x)的最大值,并且求使f(x)取得最大值时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x)=
1(-1<x<0)
0(0≤x≤1)
,则f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-(2a+2)x+a(a+2)≤0}.B={x|y=log2(4-x2)}
(1)若a=1,求A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义f(x)是R上的奇函数,且当x≥0时,f(x)=x2.若对任意的x∈[a,a+2]均有f(x+a)≥2f(x),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x+1)的定义域是[-
3
4
,7],则函数
f(2x)
log2(x+1)
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:“?x∈(0,有9x+
a2
x
≥7a+1,其中常数a<0”,若命题q:“?x0∈R,x02+2ax0+2-a=0,若“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,x02+ax0+a<0.若?p是真命题,则实数a的取值范围是(  )
A、[0,4]
B、(0,4)
C、(-∞,0)∪(4,+∞)
D、(-∞,0]∪[4,+∞)

查看答案和解析>>

同步练习册答案