精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 ,离心率,它的长轴长等于圆的直径.

(1)求椭圆 的方程;

(2)若过点的直线交椭圆两点,是否存在定点 ,使得以为直径的圆经过这个定点,若存在,求出定点的坐标;若不存在,请说明理由?

【答案】(1);(2)定点.

【解析】试题分析:(1)利用配方法得到圆的圆心和半径,由此得到,结合 可求得椭圆的方程.(2)先从特殊情况出发,过作斜率为和斜率不存在的直线,求出两个特殊圆,这两个圆的交点为,猜想存在点,设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,计算,所以,即以为直径的圆经过这个定点.

试题解析:

(1) 圆方程化为,则圆的直径为,由得: ,所以椭圆的方程: .

(2)过点作斜率为和斜率不存在的直线交椭圆的两个交点为直径的圆分别为,这两个圆的交点为.所以猜想存在点,使得以 为直径的圆经过这个定点. 设直线 的方程为,与椭圆,联立方程组得: ,设交点得, ,则 ,所以,即以 为直径的圆经过这个定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线l:y=2x上,且经过点A(﹣3,﹣1),B(4,6).

(Ⅰ)求圆C的方程;

(Ⅱ)点P是直线l上横坐标为﹣4的点,过点P作圆C的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上任意一点, 的周长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点 (-4,0)任作一动直线交椭圆两点,记,若在线段上取一点,使得,则当直线转动时,点在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.

(Ⅰ)求证: 平面

(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年9月16日05时,第19号台风“杜苏芮”的中心位于甲地,它以每小时30千米的速度向西偏北的方向移动,距台风中心千米以内的地区都将受到影响,若16日08时到17日08时,距甲地正西方向900千米的乙地恰好受台风影响,则的值分别为(附: )( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[7,15),设f(2x+1)的定义域为A,B={x|x<a或x>a+1},若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,判断的单调性;

(2)若上为单调增函数,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)=﹣x2﹣3,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[﹣1,2]时,f(x)的最小值为1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数t满足f(0)=f(2)=2,f(1)=1.
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,2]时,求y=f(x)的值域;
(3)设h(x)=f(x)﹣mx在[1,3]上是单调函数,求m的取值范围.

查看答案和解析>>

同步练习册答案