精英家教网 > 高中数学 > 题目详情

如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。

(1)求AB和OC的长;

(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;

(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。

 

【答案】

(1),(2)(3)

【解析】

试题分析:解:(1)令y=0,即

整理得

解得:

∴ A(—3,0),B(6,0)

令x = 0,得y = —9,

∴ 点C(0,—9)

,      3分

(2)

∵ l∥BC,

∴ △ADE∽△ACB,

,即

,其中。          6分

(3)

∴ 当时,S△CDE取得最大值,且最大值是

这时点E(,0),

作EF⊥BC,垂足为F,

∵∠EBF=∠CBO,∠EFB=∠COB,

∴△EFB∽△COB,

,即

∴ ⊙E的面积为:

答:以点E为圆心,与BC相切的圆的面积为。     11分

考点:二次函数的性质、相似三角形的性质

点评:该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足
AB
BM
+
2
|
AM
|=0
,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点C(x,y)(x>0,y>0)在抛物线f(x)=4-x2上(如图),过C作CD∥x轴交抛物线于另一点D,设抛物线与x轴相交于A,B两点,试求x为何值时,梯形ABCD的面积最大,并求出面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设抛物线C1:y2=4mx(m>0)的焦点为F2,且其准线与x轴交于F1,以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)是否存在实数m,使得△PF1F2的三条边的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案