精英家教网 > 高中数学 > 题目详情

【题目】将函数向左平移个单位,得到的图象,则满足(

A.图象关于点对称,在区间上为增函数

B.函数最大值为2,图象关于点对称

C.图象关于直线对称,在上的最小值为1

D.最小正周期为有两个根

【答案】C

【解析】

由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.

函数

向左平移个单位,

可得

由正弦函数的性质可知,的对称中心满足,解得,所以AB选项中的对称中心错误;

对于C的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;

对于D,最小正周期为,当,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;

综上可知,正确的为C

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )

78 16 65 72 08 02 63 14 07 02 43 69 69 38 74

32 04 94 23 49 55 80 20 36 35 48 69 97 28 01

A. 05 B. 09 C. 07 D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的一个焦点与抛物线的焦点重合,且过点.过点的直线交椭圆 两点, 为椭圆的左顶点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)求面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

1)求直线所过定点A的坐标;

2)求直线被圆C所截得的弦长最短时直线的方程及最短弦长;

3)已知点M(-3,4),在直线MC(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数, 试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是平面四边形的对角线, ,且.现在沿所在的直线把折起来,使平面平面,如图.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题:

①“等和数列”一定是常数数列;

②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列;

③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列;

④数列是“等和数列”且公和,则其前项之和

其中,正确的命题为__________.(请填出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以原点为圆心,半径为的圆 与直线相切.

(1)直线过点截圆所得弦长为求直线 的方程;

(2)设圆轴的正半轴的交点为,过点作两条斜率分别为 的直线交圆两点,且 ,证明:直线恒过一个定点,并求出该定点坐标.

查看答案和解析>>

同步练习册答案