精英家教网 > 高中数学 > 题目详情
如图,在长方体中,
(1)若点在对角线上移动,求证:
(2)当为棱中点时,求点到平面的距离。
(1)详见解析;(2).

试题分析:(1)连结,要证,只要证,只要证平面 
事实上,在正方形中,,且有,从而有,结论可证.
(2)连结,因为,可利用等积法求点到平面的距离.
证明:(1)由长方体 ,得:
      ∴ 即
又由正方形,得:,   而
∴    于是
            6分
解:(2)垂直,则
所以,设点到平面的距离为
则由,得                12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,⊥平面,,分别为线段的中点.

(1)求证:∥平面;    
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,点在边上,
(1)求证:平面
(2)如果点的中点,求证://平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,
OP⊥底面ABC.
(1)若k=1,试求异面直线PA与BD所成角余弦值的大小;
(2)当k取何值时,二面角O—PC—B的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是直线,是平面,下列命题中,正确的命题是      .(填序号)
①若垂直于内两条直线,则;  
②若平行于,则内可有无数条直线与平行;
③若m⊥n,n⊥l则m∥l; ④若,则;  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若空间中四条直线两两不同的直线,满足,则下列结论一定正确的是(   )
A.B.
C.既不平行也不垂直D.的位置关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,是两个不同的平面.则下列命题中正确的是(    )
A.m⊥,n,m⊥n
B.=m,n⊥mn⊥
C.,m⊥,n∥m⊥n
D.,m⊥,n∥m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,上一点,面,四边形为矩形 ,,
(1)已知,且∥面,求的值;
(2)求证:,并求点到面的距离.

查看答案和解析>>

同步练习册答案