精英家教网 > 高中数学 > 题目详情
如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5
分析:由题意可得 cos∠PDA=
5
5
,再由
PA
PB
=(
PD
+
DA
)•(
PC
+
CB
)=(
PD
+2
CB
)•(-
PD
+
CB
),利用两个向量的数量积的定义运算求得结果.
解答:解:由题意可得tan∠PDA=2,cos∠PDA=
5
5
DA
=2
CB
PD
=-
PC
,|
PD
|=|
PC
|=
1
2
16+4
=
5

PA
PB
=(
PD
+
DA
 )•(
PC
+
CB
)=(
PD
+2
CB
)•(-
PD
+
CB

=-
PD
2
-
PD
CB
+2
CB
2
=-5-
5
×2 cos(π-∠PDA)+2×4
=-5-
5
×2×(-
5
5
)+8=5,
故答案为 5.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案