精英家教网 > 高中数学 > 题目详情
如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.
(1)    (2)见解析
解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(2a,0,0),B(2a,2a,0),C(0,2a,0),D1(0,0,a),F(a,0,0),B1(a,a,a),C1(0,a,a).

(1)∵=(-a,a,a),=(0,0,a),
∴cos〈〉=
所以异面直线AB1与DD1所成角的余弦值为.
(2)证明:∵=(-a,-a,a),
=(-2a,0,0),=(0,a,a),
∴FB1⊥BB1,FB1⊥BC.
∵BB1∩BC=B,∴FB1⊥平面BCC1B1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形中,,点分别是的中点,点上,沿将梯形翻折,使平面平面.

(1)当最小时,求证:;
(2)当时,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;
(2)求二面角F­CD­A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,点M在线段EC上(除端点外)

(1)当点M为EC中点时,求证:平面
(2)若平面与平面ABF所成二面角为锐角,且该二面角的余弦值为时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l⊥平面α,直线l的方向向量为s,平面α的法向量为n,则下列结论正确的是(  )
A.s=(1,0,1),n=(1,0,-1)
B.s=(1,1,1),n=(1,1,-2)
C.s=(2,1,1),n=(-4,-2,-2)
D.s=(1,3,1),n=(2,0,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l的方向向量为=(-1,1,1),平面π的法向量为=(2,x2+x,-x),若直线l∥平面π,则x的值为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是单位向量,且,则的值为      

查看答案和解析>>

同步练习册答案