精英家教网 > 高中数学 > 题目详情

【题目】集合I={1,2,3,4,5},集合A,B为集合I的两个非空子集,若集合A中元素的最大值小于集合B中元素的最小值,则满足条件的A,B的不同情形有( )种.
A.46
B.47
C.48
D.49

【答案】D
【解析】解:(1).B中最小元素是5时:
B={5},A可以为{1,2,3,4}的非空子集,共15个,
如 A={1,2,3,4},A={1,2,3}等,共15个组合;(2).B中最小元素是4时:
B有{4,5}{4}两种,A可以为{1,2,3}的非空子集,共7个,
共14个组合(3).B中最小元素是3时:
B有{3},{3,4},{3,5},{3,4,5}四种,A可以为{1,2}的非空子集,共3个,
共12个组合;(4).B中最小元素是2时:
B有{2},{2,3},{2,4},{2,5}{2,3,4},{2,3,5},{2,4,5}{2,3,4,5}八种,A={1},
共8个组合;
综上,共15+14+12+8=49;
故选:D.
【考点精析】通过灵活运用元素与集合关系的判断,掌握对象与集合的关系是,或者,两者必居其一即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017唐山三模已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为 分别是它的左、右焦点,且存在直线,使关于的对称点恰好是圆 )的一条直径的两个端点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与抛物线)相交于两点,射线与椭圆分别相交于点.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调增区间;

(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高二年级学生对教师教学的意见,打算从高二年级883名学生中抽取80名进行座谈,若采用下面的方法选取:先用简单随机抽样从883人中剔除3人,剩下880人再按系统抽样的方法进行,则每人入选的概率是(
A.
B.
C.
D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)的奇偶性;
(2)判断f(x)的单调性,并用定义证明;
(3)解不等式f(f(x))+f( )<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣mx+m2﹣19=0},B={x|x2﹣5x+6=0},C={2,﹣4},若A∩B≠,A∩C=,求实数m的值.

查看答案和解析>>

同步练习册答案