精英家教网 > 高中数学 > 题目详情

【题目】若关于x的方程 sinx+cosx=k在区间[0, ]上有两个不同的实数解,则实数k的取值范围为

【答案】[ ,2)
【解析】解:∵方程 sinx+cosx=k,
∴2sin(x+ )=k,即sinx(x+ )=
可以令f(x)=sinx(x+ ),h(x)=
∵方程 sinx+cosx=k在区间[0, ]上有两个不同的实数解
∴函数f(x)和h(x)的图象有两个交点,
如下图:

≤x+
∴h(x)= ,要使y=f(x)与y=h(x)有两个交点,
∴y=h(x)在直线m和直线n之间,有两个交点,
<1,
k<2.
所以答案是:[ ,2).
【考点精析】认真审题,首先需要了解两角和与差的正弦公式(两角和与差的正弦公式:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三个人该课程考核都合格的概率(结果保留三位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(2,0)和单位圆上的两点B(1,0),C(-),点P是劣弧上一点,BOC=α,∠BOP=β

(Ⅰ)OCOP,求sin(π-α)+sin(-β)的值;

(Ⅱ)ft=|+t|(tR),当ft的最小值为1时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC的对边分别为abc

(1)若的面积,求a+c值;

(2)若2cosC+)=c2,求角C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不超过实数x的最大整数称为x整数部分,记作[x].已知fx)=cos([x]-x),给出下列结论:

fx)是偶函数;

fx)是周期函数,且最小正周期为π;

fx)的单调递减区间为[kk+1)(kZ);

④fx)的值域为(cos1,1].

其中正确命题的序号是______(填上所以正确答案的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax3bx+4,当x=2时,函数f(x)有极值-.

(1)求函数的解析式;

(2)若关于x的方程f(x)=k有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)直线与椭圆交于两点,点是椭圆的右顶点,直线与直线分别与轴交于两点,试问在轴上是否存在一个定点使得?若是,求出定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.

乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2,若摸到的是2个相同颜色的球,则为中奖.

试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,当x=时,y最大值1,当x=时,取得最小值-1

(1)求y=fx)的解析式;

(2)写出此函数取得最大值时自变量x的集合和它的单调递增区间.

查看答案和解析>>

同步练习册答案