精英家教网 > 高中数学 > 题目详情

【题目】从某大学一年级女生中,选取身高分别是150cm、155cm、160cm、165cm、170cm的学生各一名,其身高和体重数据如表所示:

身高/cm(x)

150

155

160

165

170

体重/kg(y)

43

46

49

51

56


(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,计算身高为168cm时,体重的估计值 为多少?
参考公式:线性回归方程 = x+ ,其中 = = =

【答案】
(1)解:由已知数据,可得

(165﹣160)(51﹣49)+(170﹣160)(56﹣49)=155,

∴y关于x的线性回归方程为y=0.62x﹣50.2


(2)解:由(1)知,当x=168时, (kg)

因此,当身高为168cm时,体重的估计值 为53.96kg


【解析】(1)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程;(2)由回归直线方程,计算当x=168cm时,即可求得体重的估计值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且OB=(1+ )百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.

(1)试将y表示成x的函数,并求出函数y的解析式;
(2)当x取何值时?整个中转站的占地面积SOAC最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017南通一模(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。

(1)当时,试判断四边形MNPE的形状,并求其面积;

(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017辽宁鞍山市最后一次模】如图所示,在三棱锥,侧面, 是全等的直角三角形, 是公共的斜边且, ,另一侧面是正三角形.

(1)求证:

(2)若在线段上存在一点,使与平面,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,且a1=﹣15,S5=﹣55.
(1)求数列{an}的通项公式;
(2)若不等式Sn>t对于任意的n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川泸州四诊】如图,平面平面,四边形是菱形, .

(1)求证:

(2)若,且直线与平面所成角为,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 【2017江西4月质检】如图,四棱锥中,侧面底面 , ,点在棱上,且,点在棱上,且平面.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明

查看答案和解析>>

同步练习册答案