本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
科目:高中数学 来源:2011届河南省卫辉市高三2月月考数学理卷 题型:解答题
(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(月日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 汽车行 驶路线 | 不堵车的情况下到达亚运村乙所需时间 (天) | 堵车的情况下到达亚运村乙所需时间 (天) | 堵车的 概率 | 运费 (万元) |
公路1 | 2 | 3 | ||
公路2 | 1 | 4 |
查看答案和解析>>
科目:高中数学 来源:2011届江西省会昌中学高三下学期第一次月考数学理卷 题型:解答题
(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.若菜园恰能在约定日期(月日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
(注:毛利润销售商支付给菜园的费用运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求的分布列和数学期望;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河南省卫辉市高三2月月考数学理卷 题型:解答题
(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(月日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 汽车行 驶路线 |
不堵车的情况下到达亚运村乙所需 时间 (天) |
堵车的情况下到达亚运村乙所需时间 (天) |
堵车的 概率
|
运费 (万元)
|
公路1 |
2 |
3 |
||
公路2 |
1 |
4 |
(注:毛利润销售商支付给菜园的费用运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求的分布列和数学期望;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省六校联合体高三第二次联考数学理卷 题型:解答题
(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(月日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 汽车行 驶路线 |
不堵车的情况下到达亚运村乙所需 时间 (天) |
堵车的情况下到达亚运村乙所需时间 (天) |
堵车的 概率
|
运费 (万元)
|
公路1 |
2 |
3 |
||
公路2 |
1 |
4 |
(注:毛利润销售商支付给菜园的费用运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求的分布列和数学期望;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
查看答案和解析>>
科目:高中数学 来源: 题型:阅读理解
(本小题满分12分)
某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解,训练对提髙‘数学应用题得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下 | 61—70 分 | 71—80 分 | 81-90 分 | 91-100分 | |
甲班(人数) | 3 | 6 | 11 | 18 | 12 |
乙班(人数) | 8 | 13 | 15 | 10 |
现规定平均成绩在80分以上(不含80分)的为优秀.
(I )试分别估计两个班级的优秀率;
(II)由以上统计数据填写下面2 X 2列联表,并问是否有"5匁的把握认为“加强‘语文阅读理解’训练对提商‘数学应用题’得分率”有帮助.
优秀人数 | 非优秀人数 | 合计 | |
甲班 | |||
乙班 | |||
合计 |
参考公式及数据:,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0. 05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.82 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com