精英家教网 > 高中数学 > 题目详情

【题目】四棱锥PABCD中,底面ABCD是边长为8的菱形,BAD=,若PA=PD=5,平面PAD平面ABCD

(1)求四棱锥PABCD的体积;

(2)求证:ADPB

【答案】(1)(2)详见解析

【解析】

试题分析:(1)过P作PMAD于M利用面PAD面ABCD可得PM面ABCD,菱形ABCD的面积,再利用即可得出;(2)连接BM利用BD=BA=8,AM=DM,可得ADBM,又ADPM,可得AD平面PMB,即可得出

试题解析:(1)过P作PMAD于M面PAD面ABCD,面PAD面ABCD=AD,PMPAD

PM面ABCD,

又PA=PD=5,AD=8

M为AD的中点且PM==3

,AD=8,

菱形ABCD的面积S==

VPABCD===

(2)证明:连接BM

BD=BA=8,AM=DM,

ADBM,

又ADPM,且BMPM=M

AD平面PMB

ADPB

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥的直观图和三视图如下:

(1)求证: 底面

(2)求三棱锥的体积;

(3)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,在正四面体中,分别是棱的中点.

1)求证:四边形是平行四边形;

2)求证:平面

3)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了50人,将调查情况进行整理后制成下表:

)完成被调查人员的频率分布直方图;

)若从年龄在[1525),[2535)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;

)在()的条件下,再记选中的4人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB的两端在直二面角αlβ的两个面内,并与这两个面都成30°角,则异面直线ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数若在定义域内存在实数满足,则称为局部奇函数

1)已知二次函数,试判断是否为局部奇函数,并说明理由;

2)是定义在区间上的局部奇函数求实数的取值范围;

3)为定义域为上的局部奇函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校数学系2016年高等代数试题有6个题库,其中3个是新题库(即没有用过的题库),3个是旧题库(即至少用过一次的题库),每次期末考试任意选择2个题库里的试题考试.

(1)设2016年期末考试时选到的新题库个数为,求的分布列和数学期望;

(2)已知2016年时用过的题库都当作旧题库,求2017年期末考试时恰好到1个新题库的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

同步练习册答案