精英家教网 > 高中数学 > 题目详情
设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为2,求圆的方程.
【答案】分析:设出圆的方程为(x-a)2+(y-b)2=r2,由圆上的点关于直线的对称点还在圆上得到圆心在这条直线上,设出圆心坐标,代入到x+2y=0中得到①;把A的坐标代入圆的方程得到②;由圆与直线x-y+1=0相交的弦长为2,利用垂径定理得到弦的一半,圆的半径,弦心距成直角三角形,利用勾股定理得到③,三者联立即可求出a、b和r的值,得到满足题意的圆方程.
解答:解:设所求圆的圆心为(a,b),半径为r,
∵点A(2,3)关于直线x+2y=0的对称点A′仍在这个圆上,
∴圆心(a,b)在直线x+2y=0上,
∴a+2b=0,①
(2-a)2+(3-b)2=r2.②
又直线x-y+1=0截圆所得的弦长为2
圆心(a,b)到直线x-y+1=0的距离为d==
则根据垂径定理得:r2-(2=(2
解由方程①、②、③组成的方程组得:

∴所求圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.
点评:此题要求学生掌握直线与圆的位置关系,灵活运用垂径定理及对称知识化简求值,是一道中档题.学生做题时注意满足题意的圆方程有两个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为2
2
,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上的圆的方程;
(2)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在这个圆上,且与直线x-y+1=0相交的弦长为2
2
,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源:0110 期末题 题型:解答题

设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且直线x-y+1=0被圆截得的弦长为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上的圆的方程;

(2)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在这个圆上,且与直线x-y+1=0相交的弦长为,求圆方程.

查看答案和解析>>

同步练习册答案