精英家教网 > 高中数学 > 题目详情
5.命题p:?x∈R,2${\;}^{{x}^{2}-1}$<$\frac{1}{4}$,命题q:若M为曲线y2=4x2上一点,A($\frac{5}{2}$,0),则|MA|的最小值为$\sqrt{5}$,那么下列命题为真命题的是(  )
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

分析 利用指数函数与二次函数的单调性即可判断命题p的真假,利用点到直线的距离公式即可判断出命题q的真假.再利用复合命题真假的判断方法,即可判断出真假.

解答 解:命题p:∵2${\;}^{{x}^{2}-1}$>${2}^{-1}=\frac{1}{2}$>$\frac{1}{4}$,∴命题p是假命题.
命题q:曲线y2=4x2,化为y=±2x,∴|MA|的最小值=$\frac{|±\frac{5}{2}×2-0|}{\sqrt{5}}$=$\sqrt{5}$,因此命题q为真命题.
∴下列命题为真命题的是D:(¬p)∧q,
故选:D.

点评 本题考查了简易逻辑的性质、指数函数与二次函数的单调性、点到直线的距离公式、复合命题真假的判断方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)当a=b=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)当a=0,b=-1时,方程f(x)=mx在区间[$\frac{1}{e}$,+∞)内有两个不同的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为(  )
A.120B.160C.280D.400

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题:“若$\sqrt{x}$>1,则lnx>0”的否命题为(  )
A.若$\sqrt{x}$>1,则lnx≤0B.若$\sqrt{x}$≤1,则lnx>0C.若$\sqrt{x}$≤1,则lnx≤0D.若lnx>0,则$\sqrt{x}$>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知A(-3,0),B(3,0),动点M满足$\overrightarrow{MA}$•$\overrightarrow{MB}$=1,记动点M的轨迹为C.
(1)求C的方程;
(2)若直线l:y=kx+4与C交于P,Q两点,且|PQ|=6,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,x3-3x>0”的否定为(  )
A.?x∈R,x3-3x≤0B.?x∈R,x3-3x<0C.?x∈R,x3-3x≤0D.?x∈R,x3-3x>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的偶函数f(x)满足,当x<0时,f(x)=$\frac{x}{x-1}$,则曲线y=f(x)在点(2,f(2))处的切线的斜率为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y=9x2的焦点坐标为(  )
A.($\frac{1}{36}$,0)B.(0,$\frac{1}{36}$)C.($\frac{9}{4}$,0)D.(0,$\frac{9}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l过坐标原点O,圆C的方程为x2+y2-6y+4=0.
(Ⅰ)当直线l的斜率为$\sqrt{2}$时,求l与圆C相交所得的弦长;
(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.

查看答案和解析>>

同步练习册答案