精英家教网 > 高中数学 > 题目详情
如图所示,正四棱锥S-ABCD中,高SO=4,E是BC边的中点,AB=6,求正四棱锥S-ABCD的斜高、侧面积、体积.
分析:斜高SE在RT△SOE中求解,利用侧面积、体积公式求解计算.
解答:解:在RT△SOE中,OE=4,所以斜高SE=
SO2+OE2
=
42+32
=5
侧面积S=
1
2
×6×4×5
=60.
体积V=
1
3
×62×4
=48.
点评:本题考查正四棱锥的结构特征,侧面积、体积的计算.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,正四棱台ABCD-A1B1C1D1是由一个正三棱锥S-ABCD(底面为正方形,顶点在底面上的射影为底面正方形的中心)被平行于底面的平面截所得.已知正四棱台ABCD-A1B1C1D1下底面边长为2,上底面边长为1,高为2.
(1)求四棱台ABCD-A1B1C1D1的体积;
(2)求正四棱锥S-ABCD的体积;
(3)证明:AA1∥平面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,将y表为x的函数;
(2)求y的最大值及此时x的值;
(3)在第(2)问的条件下,设F是CD的中点,问是否存在这样的动点P,它在此棱锥的表面(包含底面ABCD)运动,且FP⊥AC.如果存在,在图中画出其轨迹并计算轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,求y的最大值及y取最大值时的x的值;
(2)空间一动点P满足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)问的条件下,求|
SP
|
的最小值,并求取得最小值时a,b,c的值;
(3)在第(1)问的条件下,设F是CD的中点,问是否存在这样的动点Q,它在此棱锥的表面(包含底面ABCD)运动,且FQ⊥AC?如果存在,计算其运动轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市门头沟区育园中学高一(上)期末数学试卷(解析版) 题型:解答题

如图所示,正四棱锥S-ABCD中,高SO=4,E是BC边的中点,AB=6,求正四棱锥S-ABCD的斜高、侧面积、体积.

查看答案和解析>>

同步练习册答案