精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2ax+b的图象关于直线x=1对称,且方程f(x)+2x=0有两个相等的实根.
(1)求a,b的值;
(2)求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.
分析:(1)由已知f(x)=x2-2ax+b的图象关于直线x=1对称,可得-
-2a
2
=1
,从而a=1,根据方程f(x)-2x=0有两个相等的实根,可得△=0,从而可求b的值;
(2)求导函数f'(x)=2x-2,利用f'(x)<0得函数单调递减区间;f'(x)>0得f(x)的单调递增区间,结合定义域可求函数的最值.
解答:解:(1)由已知f(x)=x2-2ax+b的图象关于直线x=1对称,可得-
-2a
2
=1

∴a=1,
又方程f(x)-2x=0有两个相等的实根,可得△=(2a-2)2-4b=0,
∴b=0,
a=1
b=0

(2)由(1)知f(x)=x2-2x且f'(x)=2x-2可知,
当x∈[0,1]时,f'(x)<0所以f(x)单调递减;
当x∈[1,3]时,f'(x)>0所以f(x)单调递增   
因为f(0)=0,f(1)=-1,f(3)=3,
所以f(x)的最大值为3,f(x)最小值为-1.
注:也可以用二次函数的图象来求最值.
点评:本题以二次函数的性质为载体,考查二次函数解析式的求解,考查二次函数在指点区间上的最值问题,解题时应注意对称轴与区间的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案